В равнобедренном треугольнике боковые стороны равны, также как и углы при основании, зная, что сумма углов в треугольнике равна 180 градусов, составим и решим уравнение:
2x=180-52
2x=128
x=64 - угол при основании
ответ: углы при основании равны 64 градуса
2) Найти градусную меру угла DCE, зная, что FEC=105 градусов. Зная, что сумма соответсвенных углов равна 180*, найдем DCE:
DCE=180-105=75
ответ: DCE=75*
3) Для начал найдем угл ADE
ADE=180-(28+10)=180-38=142
DCB=180-142=38*
Cумма углов в треугольнике равна 180, значит угол
C=180-(72+38)=70*
ответ: C=70*
Больше 3 не решу, так как правила знаний запрещает выкладывать более 3 вопросов
Площадь трапеции исчисляется по формуле полусуммы оснований на высоту. Нам предстоит найти высоту и оба основания. Нам дан угол 120 градусов, как мы знаем, сумма углов трапеции( как и любого выпуклого 4-х угольника) равна 360 градусов, тогда угол при вершине С=120 градусов, а углы при основании равнобокой трапеции равны по 60( при вершинах А и Д), высота - перпендекуляр, т.е. углы опущенные к основанию равны 90 градусов(даже отмечено на рисунке). Тогда рассмотрим треугольник АВН В нем угол при вершине В 30, т.к. угол при А 60. Из теоремы Пифагора мы знаем, что катет лежащий напротив угла в 30 градусов равен половине гипотенузы, а гипотенуза у нас сторона АВ, значит АН =2, АD=AH+HD=2+9=11 AH=PD=2, значит HF=BC=AD-AH-PD=AD-2AH=11-4=7, BC=7,AD=11 . мы нашли оба основания, а значит осталось найти высоту. Воспользуемся теоремой Пифагора
1)
В равнобедренном треугольнике боковые стороны равны, также как и углы при основании, зная, что сумма углов в треугольнике равна 180 градусов, составим и решим уравнение:
2x=180-52
2x=128
x=64 - угол при основании
ответ: углы при основании равны 64 градуса
2) Найти градусную меру угла DCE, зная, что FEC=105 градусов. Зная, что сумма соответсвенных углов равна 180*, найдем DCE:
DCE=180-105=75
ответ: DCE=75*
3) Для начал найдем угл ADE
ADE=180-(28+10)=180-38=142
DCB=180-142=38*
Cумма углов в треугольнике равна 180, значит угол
C=180-(72+38)=70*
ответ: C=70*
Больше 3 не решу, так как правила знаний запрещает выкладывать более 3 вопросов
18√3см²
Объяснение:
Площадь трапеции исчисляется по формуле полусуммы оснований на высоту. Нам предстоит найти высоту и оба основания. Нам дан угол 120 градусов, как мы знаем, сумма углов трапеции( как и любого выпуклого 4-х угольника) равна 360 градусов, тогда угол при вершине С=120 градусов, а углы при основании равнобокой трапеции равны по 60( при вершинах А и Д), высота - перпендекуляр, т.е. углы опущенные к основанию равны 90 градусов(даже отмечено на рисунке). Тогда рассмотрим треугольник АВН В нем угол при вершине В 30, т.к. угол при А 60. Из теоремы Пифагора мы знаем, что катет лежащий напротив угла в 30 градусов равен половине гипотенузы, а гипотенуза у нас сторона АВ, значит АН =2, АD=AH+HD=2+9=11 AH=PD=2, значит HF=BC=AD-AH-PD=AD-2AH=11-4=7, BC=7,AD=11 . мы нашли оба основания, а значит осталось найти высоту. Воспользуемся теоремой Пифагора
BH=√AB²-AH²=√4²-2²=√16-4=√12=2√3
Осталось подставить в формулу
S=1/2*(AD+BC)*BH=1/2*(7+11)*2√3=18√3