Пирамида правильная, т. е. проекция вершины на основание совпадает с пересечением его диагоналей. В квадрате длина диагонали «сторона квадрата» множить на корень из 2-х (можно сослаться на теорему Пифагора – квадрат гипотенузы равен сумме квадратов катетов, поскольку треугольник имеет прямой угол). Диагональ квадрата – она же и основание треугольника в указанном сечении пирамиды. Угол (при учёте, что треугольник прямоугольный) вычисляется как арктангенс отношения противолежащего катета к прилежащему. Противолежащий – это высота из условия, а прилежащий – половина диагонали квадрата в основании. Если подставить все известные данные, то получается дробь: делимое - 5 корней из 6-ти, а делитель - 10 корней из 2-х делённое на 2. После «перекочёвки» 2-ки к 5-ке и сокращения остаётся корень из 6 делить на корень из 2-х или просто корень из 3-х. Арктангенс корня из 3-х ровно 60 градусов. Площадь сечения просто получается перемножением катетов того же треугольника (половинки сечения). 5 корней из 6 множить на 10 корней из 2-х делённых на 2. Всё легко сокращается до вида 50 корней из 3-х.
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см