Задан круг с центром в точке O, площадью 48Π. На окружности, ограничивающей данный круг, расположена точка A. Из точки S проведён перпендикуляр SO к плоскости круга. Найдите SO, если прямая SA наклонена к плоскости круга под углом 60°.
1 a) (MD) и (BC) скрещивающиеся прямые по теореме: Если одна из двух прямых (это ВС) лежит в некоторой плоскости, а другая прямая (это MD) пересекает эту плоскость в точке (это D) , НЕ лежащей на первой прямой (на ВС), то эти прямые скрещивающиеся. (ВС) принадлежит плоскости по условию, (MD) НЕ принадлежит плоскости (т.к. М НЕ принадлежит по условию) ---> (MD) ПЕРЕСЕКАЕТ плоскость в точке D ( D ведь принадлежит плоскости)) и эта точка D не лежит на прямой (ВС). 1 б) (MB) и (DK) скрещивающиеся прямые и (MB) и (DK) пересекают данную плоскость --- здесь теорему не применить))) нужно рассмотреть другую плоскость... например (MBD) -- три точки однозначно определяют плоскость))) ---аналогично можно рассмотреть, например, плоскость (KBD) (MВ) принадлежит плоскости (MBD) по построению, (КD) НЕ принадлежит плоскости (т.к. К является серединой (МА), А НЕ принадлежит (MBD) по построению, следовательно и К НЕ принадлежит (MBD)) ---> (KD) ПЕРЕСЕКАЕТ плоскость (MBD) в точке D и эта точка D не лежит на прямой (МВ). 2) точки М и К принадлежат плоскости (АВС), следовательно и вся прямая (МК) принадлежит (АВС), для треугольника АВС отрезок МК -- средняя линия по условию))) про среднюю линию треугольника известно, что она || третьей стороне треугольника (в нашем случае || АС))))) (МК) ∈ (АВС), (МК) ∈ (а), (МК) || (AC) ---> (AC) || (a) по теореме: Если прямая, не лежащая в данной плоскости, || КАКОЙ-НИБУДЬ прямой, лежащей в плоскости, то она || и ВСЕЙ данной ПЛОСКОСТИ. (АС) НЕ ЛЕЖИТ в плоскости (а)...
Треугольник АВС прямоугольный: обозначим равные углы (угол ABC = углу ACM.) за α. Угол ВМС = 90° как вписанный угол, опирающийся на диаметр. Смежный с ним угол АМС = 180 - 90 =90°. Угол ВАС = МАС = 90 - α. Тогда угол ВСА = 180-α-(90-α) = 90°. Высота СМ треугольника АВС равна h = (2√(p(p-a)(p-b)(p-c)) / a или h = 2S / a = 2*((1/2)*15*20) / 25 = 300 / 25 = 12. Сторона а (гипотенуза) равна √(15²+20²) = √625 = 25. Площадь треугольника АВС = (1/2)*15*20= 150. Катет АМ треугольника АМС равен √(15²-12²) = √(225-144) = √81 = 9. Площадь треугольника АМС равна (1/2)*9*12 = =54. Отношение площадей заданных треугольников равно 150/54 = 25 / 9 = 5² / 3² = (5/3)². Этот вывод можно получить из соотношения сторон подобных треугольников: Подобные стороны относятся:к = ВС / СМ = 20 / 12 = 5 / 3. Площади подобных треугольников относятся как квадраты подобных сторон, то есть (5/3)².
по теореме: Если одна из двух прямых (это ВС) лежит в некоторой плоскости, а другая прямая (это MD) пересекает эту плоскость в точке (это D) , НЕ лежащей на первой прямой (на ВС), то эти прямые скрещивающиеся.
(ВС) принадлежит плоскости по условию,
(MD) НЕ принадлежит плоскости (т.к. М НЕ принадлежит по условию) --->
(MD) ПЕРЕСЕКАЕТ плоскость в точке D ( D ведь принадлежит плоскости))
и эта точка D не лежит на прямой (ВС).
1 б) (MB) и (DK) скрещивающиеся прямые
и (MB) и (DK) пересекают данную плоскость --- здесь теорему не применить)))
нужно рассмотреть другую плоскость... например (MBD) -- три точки однозначно определяют плоскость))) ---аналогично можно рассмотреть, например, плоскость (KBD)
(MВ) принадлежит плоскости (MBD) по построению,
(КD) НЕ принадлежит плоскости (т.к. К является серединой (МА),
А НЕ принадлежит (MBD) по построению,
следовательно и К НЕ принадлежит (MBD)) --->
(KD) ПЕРЕСЕКАЕТ плоскость (MBD) в точке D
и эта точка D не лежит на прямой (МВ).
2) точки М и К принадлежат плоскости (АВС), следовательно и вся прямая (МК) принадлежит (АВС),
для треугольника АВС отрезок МК -- средняя линия по условию)))
про среднюю линию треугольника известно, что она || третьей стороне треугольника (в нашем случае || АС)))))
(МК) ∈ (АВС), (МК) ∈ (а), (МК) || (AC) ---> (AC) || (a) по теореме:
Если прямая, не лежащая в данной плоскости, || КАКОЙ-НИБУДЬ прямой, лежащей в плоскости, то она || и ВСЕЙ данной ПЛОСКОСТИ.
(АС) НЕ ЛЕЖИТ в плоскости (а)...
обозначим равные углы (угол ABC = углу ACM.) за α.
Угол ВМС = 90° как вписанный угол, опирающийся на диаметр.
Смежный с ним угол АМС = 180 - 90 =90°.
Угол ВАС = МАС = 90 - α.
Тогда угол ВСА = 180-α-(90-α) = 90°.
Высота СМ треугольника АВС равна h = (2√(p(p-a)(p-b)(p-c)) / a или h = 2S / a = 2*((1/2)*15*20) / 25 = 300 / 25 = 12.
Сторона а (гипотенуза) равна √(15²+20²) = √625 = 25.
Площадь треугольника АВС = (1/2)*15*20= 150.
Катет АМ треугольника АМС равен √(15²-12²) = √(225-144) = √81 = 9. Площадь треугольника АМС равна (1/2)*9*12 =
=54.
Отношение площадей заданных треугольников равно
150/54 = 25 / 9 = 5² / 3² = (5/3)².
Этот вывод можно получить из соотношения сторон подобных треугольников:
Подобные стороны относятся:к = ВС / СМ = 20 / 12 = 5 / 3.
Площади подобных треугольников относятся как квадраты подобных сторон, то есть (5/3)².