Так как призма прямая и в основании квадрат, все углы между ребрами прямые. Между пересекающимися боковым ребром и диагональю основания, а так же пересекающимися стороной основания и диагональю боковой грани уголы прямые (если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости, проходящей через точку пересечения). По теореме Пифагора находим: (17^2-15^2)=64 - квадрат диагонали основания. 64/2 = 32 - квадрат стороны основания. 32 + 15^2 = 32+225 =257 - квадрат диагонали боковой грани \|257 (см) - диагональ боковой грани
1 -
M = 38 N = 89 K= 53 (У подобных треугольников углы равны)
K = 180 - (89+38) = 53
2 -
DE = 10 DF = 7,5
k = 2
3 -
Дано:
Треугольник АBC
Треугольник MKN
ВА = 3,9
СВ = 4,5
СА = 6
MK = 1,3
KN = 1,5
∠В = ∠K
Доказать:
ABC подобен MKN
Достроим на стороне BС треугольник BC₂A, в котором углы, прилежащие к стороне BC, равны углам в треугольнике MKN
BC₂ : MK₁ = MN : АС.
Сравним полученную пропорцию с данной в условии:
BC : MK₁ = MN : АС.
BC=BC2 ∠B = ∠K
Треугольник АВС = BC₂A, а BC₂A подобен треугольнику MKN =>
ABC подобен MKN