А) Рассмотрим треуг. АВЕ и СВД. АВ = ВС как боковые стороны равнобедренного треуг. АВС. ВЕ = ВД как половинки боковых сторон равнобедренного тр-ка АВС (т.к. АЕ и СД медианы). Угол В у этих тр-ков общий. Следовательно тр-ки АВЕ = СВД по первому признаку. б) Рассм. тр-ки ДОЕ и АОС. В равнобедренном тр-ке медианы, проведенные из вершин при основании к боковым сторонам равны и медианы пересекаются в одной точке и точкой пересечения делятся в отношении 2 : 1 считая от вершины. Значит АЕ = СД, ОД = ОЕ = 1/3 АЕ, АО = ОС = 2/2 АЕ. Треугольник, у которого две стороны равны, называется равнобедренным. Следовательно тр-ки ДОЕ и АОС равнобедренные. в) Повторюсь, медианы треугольника пересекаются в одной точке (эта точка называется центроид). Значит точка О лежит на медиане, проведенной из вершины В к основанию. Но медиана, проведенная из вершины равнобедренного треугольника к основанию является также и бисектриссой. Значит точка О лежит на бисектриссе, а точки Д и Е принадлежат боковым сторонам равнобедренного тр-ка АВС, следовательно ВО бисектрисса угла ДОЕ.
2. У равных тр-ков равны соответствующие стороны и углы. Пусть DE = DF = 4 см - боковые стороны, FE = 5 см - основание, тогда периметр DEF = 4 + 4 + 5 = 13 см. И как было сказано вначале, что у равных тр-ков равны соответствующие стороны, то АС = АВ = 4 см, ВС = 5 см. Р = 13 см.
Но может быть и другой вариант решения, поскольку в задаче не указано какая из сторон является основанием, а какая боковая, поэтому. EF = DF = 5 см - боковые стороны, DE = 4 см - основание, Р = 5 + 5 + 4 = 14 см. Следовательно периметр тр-ка АВС = 14 см.
Угол между плоскостями граней SBC и АВС - двугранный угол с ребром ВС, которое является линией пересечения данных плоскостей.
Чтобы построить этот угол, из А проведем перпендикуляр АН к ВС, из S- наклонную SH в ту же точку.
АН - проекция SH и перпендикулярна ВС. По т.трех перпендикулярах SH ⊥ВС
Перпендикуляр АН - высота, медиана и биссектриса равнобедренного треугольника АВС. ⇒ угол САН=50º:2=25º
В треугольниках АСН и ASH катет АН общий, а острые углы при Н равны.
Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.⇒
SH=5 см – это расстояние от вершины пирамиды до ВС.
Площадь полной поверхности пирамиды равна сумме площадей боковых граней и площади треугольника SBC.
Т.к. по условию ВА=СА, то и наклонные, чьими проекциями они являются, тоже равны. ⇒
SB=SC, ∆ BSC- равнобедренный с высотой SH.
S АВС=АВ•ВС•sin ∠BAC:2
Синус 50º по таблице равен 0,7660
S ABC=25•0,7660:2=9,576666 = ≈ 9,577 см²²
Для нахождения площади боковой поверхности нужно найти SA и SH
SA=SH•sin 25
sin25º=0,4226
SA=5•0,4226=2,113
S ∆ SAC=AC•SA:2= ≈5,28см²
S ∆ SAC+S ∆ SAB= ≈10,565 см²
S ∆ SBC=BC•SH:2
ВС найдем по т. косинусов
ВС²=25+25-50•cos50º
cos50º=≈0,64278
ВС=√17,860=4,226
S ∆ SBC=5•4,226•0,64378:2=10,565 см²
Площадь полной поверхности пирамиды SАВС= ≈ 21,113 см²²
АВ = ВС как боковые стороны равнобедренного треуг. АВС. ВЕ = ВД как половинки боковых сторон равнобедренного тр-ка АВС (т.к. АЕ и СД медианы). Угол В у этих тр-ков общий. Следовательно тр-ки АВЕ = СВД по первому признаку.
б) Рассм. тр-ки ДОЕ и АОС.
В равнобедренном тр-ке медианы, проведенные из вершин при основании к боковым сторонам равны и медианы пересекаются в одной точке и точкой пересечения делятся в отношении 2 : 1 считая от вершины. Значит АЕ = СД, ОД = ОЕ = 1/3 АЕ, АО = ОС = 2/2 АЕ. Треугольник, у которого две стороны равны, называется равнобедренным. Следовательно тр-ки ДОЕ и АОС равнобедренные.
в) Повторюсь, медианы треугольника пересекаются в одной точке (эта точка называется центроид). Значит точка О лежит на медиане, проведенной из вершины В к основанию. Но медиана, проведенная из вершины равнобедренного треугольника к основанию является также и бисектриссой. Значит точка О лежит на бисектриссе, а точки Д и Е принадлежат боковым сторонам равнобедренного тр-ка АВС, следовательно ВО бисектрисса угла ДОЕ.
2. У равных тр-ков равны соответствующие стороны и углы.
Пусть DE = DF = 4 см - боковые стороны, FE = 5 см - основание, тогда периметр
DEF = 4 + 4 + 5 = 13 см. И как было сказано вначале, что у равных тр-ков равны соответствующие стороны, то АС = АВ = 4 см, ВС = 5 см. Р = 13 см.
Но может быть и другой вариант решения, поскольку в задаче не указано какая из сторон является основанием, а какая боковая, поэтому.
EF = DF = 5 см - боковые стороны, DE = 4 см - основание, Р = 5 + 5 + 4 = 14 см.
Следовательно периметр тр-ка АВС = 14 см.
Угол между плоскостями граней SBC и АВС - двугранный угол с ребром ВС, которое является линией пересечения данных плоскостей.
Чтобы построить этот угол, из А проведем перпендикуляр АН к ВС, из S- наклонную SH в ту же точку.
АН - проекция SH и перпендикулярна ВС. По т.трех перпендикулярах SH ⊥ВС
Перпендикуляр АН - высота, медиана и биссектриса равнобедренного треугольника АВС. ⇒ угол САН=50º:2=25º
В треугольниках АСН и ASH катет АН общий, а острые углы при Н равны.
Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.⇒
SH=5 см – это расстояние от вершины пирамиды до ВС.
Площадь полной поверхности пирамиды равна сумме площадей боковых граней и площади треугольника SBC.
Т.к. по условию ВА=СА, то и наклонные, чьими проекциями они являются, тоже равны. ⇒
SB=SC, ∆ BSC- равнобедренный с высотой SH.
S АВС=АВ•ВС•sin ∠BAC:2
Синус 50º по таблице равен 0,7660
S ABC=25•0,7660:2=9,576666 = ≈ 9,577 см²²
Для нахождения площади боковой поверхности нужно найти SA и SH
SA=SH•sin 25
sin25º=0,4226
SA=5•0,4226=2,113
S ∆ SAC=AC•SA:2= ≈5,28см²
S ∆ SAC+S ∆ SAB= ≈10,565 см²
S ∆ SBC=BC•SH:2
ВС найдем по т. косинусов
ВС²=25+25-50•cos50º
cos50º=≈0,64278
ВС=√17,860=4,226
S ∆ SBC=5•4,226•0,64378:2=10,565 см²
Площадь полной поверхности пирамиды SАВС= ≈ 21,113 см²²