Задание 1 ( ). Основанием прямой призмы является равнобедренный прямоугольный треугольник. Высота призмы равна 10 см, а площадь боковой поверхности – 40 см2. Найдите радиус основания цилиндра, описанного около этой призмы.
Задание 2 ( ).
Угол между образующей конуса и плоскостью его основания равен α, а площадь осевого сечения равна Q. Найдите объем конуса.
Задание 3 ( ).
Основанием пирамиды является равнобедренный треугольник, основание которого равно 16 см, а боковая сторона – 10 см. В пирамиду вписан конус. Найдите площадь осевого сечения конуса, если его высота равна 9 см.
Задание 4 ( ).
Объем шара, вписанного в цилиндр, равен 288π. Найдите площадь полной поверхности цилиндр
1) Цилиндр описанный, => прямоуг.треуг.вписан в окружность, => R равен половине гипотенузы
треугольник равнобедренный, по т.Пифагора
(2R)^2 = 2x^2, где x---катет
R^2 = x^2 / 2
R = x / корень(2)
Sбок.призмы = высота * (x+x+гипотенуза) = 40
2x + 2R = 40/10 = 4
x+R = 2
x = 2-R
R = (2-R) / корень(2)
2-R-Rкорень(2) = 0
2-R(1+корень(2)) = 0
R = 2 / (1+корень(2))
можно избавиться от иррациональности в знаменателе:
домножить числитель и знаменатель на сопряженное выражение (1-корень(2))
R = 2(1-V2) / ((1-V2)(1+V2)) = 2(1-V2) / (1-2) = 2(корень(2) - 1)
2) tgα=h/R, где R-радиус основания конуса, h-высота конуса
Следовательно, h=R*tgα
2)S(сеч)=ah/2=(2Rh)/2=Rh
S(сеч)=Q => Rh=Q =>R*R*tgα=Q
R²tgα=Q
R=√(Q/tgα)
3)L=2ПR
L=2П√(Q/tgα)
3) 24 ( фото с объяснением сверху)
4) Vшара=4пR^3/3
288п=4пR^3/3
R=6
Hцилиндра=2R=12
Sполповцил=2пR(R+H)=216п