В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
POMIPO
POMIPO
24.09.2020 02:27 •  Геометрия

Задано точки М(-1;4;3), N( -2;5;-2). К(3;-4;6), Р(2;-3;1). Яке з '
наведених тверджень правильне?

Показать ответ
Ответ:
Зачемжежить
Зачемжежить
23.03.2021 15:27

Объяснение:

Дано: ΔАВС

АЕ, ВМ, СК - биссектрисы;

∠AOB = ∠ ВОС = 110°.

а) Доказать: ΔАВС - равнобедренный;

б) Найти: ∠А; ∠В; ∠С.

а) Доказательство:

Рассмотрим ΔАОВ и ΔВОС.

∠1=∠2 (условие)

∠AOB = ∠ ВОС (условие)

ВО - общая

⇒ ΔАОВ = ΔВОС (по 2 признаку)

⇒ АВ=ВС (как соответственные элементы)

⇒ ΔАВС - равнобедренный.

б) Решение:

1) ΔАОВ = ΔВОС ⇒АО=ОС (как соответственные элементы)

2) Рассмотрим ΔАОС (равнобедренный, п.1)

⇒ ∠4=∠6 (углы при основании равнобедренного треугольника  равны)

∠АОС=360°-(∠AOB + ∠ ВОС)=360°-(110°+110°)=140°

Сумма углов треугольника равна 180°.

⇒ ∠4=∠6=(180°-140°):2=20°

3) ∠3=∠4 (условие)

⇒∠А=∠3+∠4=20°+20°=40°

4) ∠А=∠С=40° (при основании равнобедренного ΔАВС)

∠В=180°-(40°+40°)=100°


Биссектрисы треугольника ABC пересекаются в точке О, причем угол AOB = угол ВОС = 110°. а) Докажите,
0,0(0 оценок)
Ответ:
Мирослава1509061
Мирослава1509061
21.01.2021 18:36

Жирным шрифтом обозначены вектора, скалярные величины обозначены обычными шрифтом.

Пусть есть три некомпланарных вектора a b c, являющиеся "боковыми" ребрами тетраэдра из условия задачи (в том смысле, что все три имеют общее начало в вершине).

Попарные векторные произведения этих векторов дают векторы, перпендикулярные граням. Поскольку все грани равны, то эти векторные произведения имеют одинаковую абсолютную величину - удвоенную площадь грани. Приняв эту удвоенную площадь грани за единицу измерения площади (это никак не ограничивает общность), можно считать нормальные вектора cxb = n₁; bxa = n₂; axc = n₃; единичными векторами.

Я выбрал порядок в произведениях векторов так, чтобы они "торчали" наружу пирамиды. Уже сейчас стоит обратить внимание, что в этом случае двугранные углы при ребрах составляют 180° в сумме с углами между так выбранными нормалями. Поэтому косинусы углов будут равны по величине, но противоположного знака.

Осталась еще четвертая грань. её ребрам соответствуют вектора a₁ = b - c; b₁ = c - a ; c₁ = a - b; причем длины векторов a₁ = a; b₁ = b; c₁ = c; так как четвертая грань равна трем "боковым". Если теперь построить нормальный вектор аналогично трем предыдущим (то есть так, чтобы он смотрел наружу тетраэдра), то

n₄ = - (с - a)x(b - c) = - bxa - cxb - axc = -(n₁ + n₂ + n₃);

или n₁ + n₂ + n₃ + n₄ = 0; (что само по себе - абсолютно замечательный результат).

пусть Σ = n₁n₂ + n₁n₃ + n₁n₄ + n₂n₃ + n₂n₄ + n₃n₄; сумма всех скалярных произведений между нормалями. Для того, чтобы доказать утверждение в задаче, нужно показать, что Σ = - 2; (каждое из произведений равно "минус косинус" угла при ребре между парами граней, заданных нормалями; я напомню, что все нормальные вектора - единичные, то есть равны 1 по модулю)

Я слегка переписываю это выражение Σ  = n₁n₂ + n₁n₃ + n₂n₃ + (n₁ + n₂ + n₃)n₄ = n₁n₂ + n₁n₃ + n₂n₃ - n₄n₄ = n₁n₂ + n₁n₃ + n₂n₃ - 1;

Однако все грани тетраэдра равноценны, и аналогично можно записать

Σ  = n₂n₃ + n₂n₄ + n₃n₄ - 1;

Σ  = n₃n₄ + n₃n₁ + n₄n₁ - 1;

Σ  = n₁n₂ + n₁n₄ + n₂n₄ - 1;

Если сложить все четыре равенства, то получится

4Σ  = 2(n₁n₂ + n₁n₃ + n₁n₄ + n₂n₃ + n₂n₄ + n₃n₄) - 4;

4Σ = 2Σ - 4; Σ = -2 чтд. :)

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота