P.S. Сорри за такой схематичный рисунок, это я в полевых условиях, а у вас, благо, есть линейка и карандаш))
S трапеции = 1/2 (AB+CD)* AC , где AB и CD - это основания, а AC - это высота. 114=1/2(12+7) * AC AC= 144:9,5 AC=12 (в нашей трапеции АС - это ещё и меньшее боковое основание, поэтому тоже идёт в ответ)
Рассмотрим ABCD (трапеция), проведём прямую ВН параллельную АС. Заметим, что прямая ВН = АС (высоте) = 12 Рассмотрим прямоугольный треугольник ВНС: По теореме Пифагора найдём отрезок ВD(гипотенузу) BD^2= 12^2+5^2=169 BD=13 (в нашей трапеции BD-больше боковое основание) ответ: 12; 13
Если провести диаметр OY (это я его так обозначил, чтобы как-то потом называть), параллельно CD и перпендикулярно (само собой) AB, то он пройдет через середину AB, то есть точки A и B симметричны относительно OY; Теперь надо построить хорду C1D1, симметричную CD относительно OY; ясно, что она параллельна CD и перпендикулярна AB, ясно, что C1D1 = CD; и вообще - CDD1C1 это прямоугольник. Что означает, что CD1 - диаметр. Поскольку при зеркальном отражении относительно OY точка A переходит в B, а точка D - в точку D1, то BD = AD1; (по определению равенства фигур, между прочим). Остается заметить, что, раз CD1 - диаметр, то треугольник ACD1 - прямоугольный, и записать для него теорему Пифагора.
S трапеции = 1/2 (AB+CD)* AC , где AB и CD - это основания, а AC - это высота.
114=1/2(12+7) * AC
AC= 144:9,5
AC=12 (в нашей трапеции АС - это ещё и меньшее боковое основание, поэтому тоже идёт в ответ)
Рассмотрим ABCD (трапеция), проведём прямую ВН параллельную АС. Заметим, что прямая ВН = АС (высоте) = 12
Рассмотрим прямоугольный треугольник ВНС:
По теореме Пифагора найдём отрезок ВD(гипотенузу)
BD^2= 12^2+5^2=169
BD=13 (в нашей трапеции BD-больше боковое основание)
ответ: 12; 13
Теперь надо построить хорду C1D1, симметричную CD относительно OY; ясно, что она параллельна CD и перпендикулярна AB, ясно, что C1D1 = CD; и вообще - CDD1C1 это прямоугольник. Что означает, что CD1 - диаметр.
Поскольку при зеркальном отражении относительно OY точка A переходит в B, а точка D - в точку D1, то BD = AD1; (по определению равенства фигур, между прочим).
Остается заметить, что, раз CD1 - диаметр, то треугольник ACD1 - прямоугольный, и записать для него теорему Пифагора.