Во второй окружности сумма противоположных углов вписанного четырехугольника PBCQ равна 180° (свойство), ⇒
∠РQC+<PBC=180° Следовательно, ∠АВС=∠PQA.
Так как ∠PQA=∠PAM, то ∠ABC=∠BAM. Они накрестлежащие, а равенство накрестлежащих углов при пересечении двух прямых секущей – признак параллельных прямых.⇒
Раз призма правильная, авс-равносторонний треугольник, в треугольнике вса1 известна вс=2, а1с=а1в= корень из 10(по теореме пифагора) , найдем высоту, она же является медианой в треугольнике а1вс и равна 3. площадь=высота *основание, значит s=2*3=6 2)в основании прямоугольного параллелепипеда - параллелограмм, найдем его площадь, для этого используем условие, что угол 60 градусов, высота будет корень из 3, тогда площадь основания=3корня из 3 умножить на корень из3=9. объем=площадь основания*высоту, зн. v=9уможить4=36
Через т.А проведем касательную АМ
АР- хорда, ∠МАР =дуга АР:2 ( свойство угла между касательной и хордой)
Вписанный ∠АQP=дуга АР:2 ( свойство вписанного угла)⇒
∠МАР=∠АQP.
∠РQC +∠PQA=180°
Во второй окружности сумма противоположных углов вписанного четырехугольника PBCQ равна 180° (свойство), ⇒
∠РQC+<PBC=180° Следовательно, ∠АВС=∠PQA.
Так как ∠PQA=∠PAM, то ∠ABC=∠BAM. Они накрестлежащие, а равенство накрестлежащих углов при пересечении двух прямых секущей – признак параллельных прямых.⇒
МА║ВС , что и требовалось доказать.