В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Это просто: смотри: сначала найди градусную меру угла 9-ти угольника (360:9=40) теперь проведи из центра этого девятиугольника отрезки, соединяющинся с вершинами углов. По условию твой многоугольник правильный, значит все треугольники, которые ты получишь будут равнобедренными. Рассмотри один из них, тебе известно основание и угол. (40:2=20 - это градусная мера угла при основании). В р/б треугольнике высота=медиана=биссектрисса. Теперь рассмотри получившийся прямоугольный тругольник: воспользуйся формулой косинуса: получится, что гиппотенуза этого треугольника - и есть радиус многоугольника. Радиус = cos20•половину основания многоугольника
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.