3. Прямоугольник (назовём ABCD) является параллелограммом. Значит точкой пересечения (точка О) диагонали делятся пополам, а по свойству прямоугольника они и равны.
Тогда AO=BO, треугольник-равнобедренный. Т.к. равнобедренный треугольник имеет угол 60°, то становится равносторонним (все углы 60°). Значит, половинки диагоналей (АО и OB) = 4, тогда диагонали (АС и BD) = 4×2=8.
По формуле площади прямоугольника через диагонали, что S прямоугольника равна произведению диагоналей на синус острого угла между ними, получаем: 8×8×sin60° = 64×√3/2 = 32√3.
1. Для начала в треугольнике АВС из вершины В на основание АС опустим высоту ВН.
Площадь треугольника АВС = 1/2 * ВН * АС
Из этой формулы найдём ВН: 12=1/2*ВН*8, и отсюда ВН = 3
Теперь рассмотрим треугольник АВН.
Он является прямоугольным, так как ВН - высота (построение).
Гипотенуза АВ = 6, а катет ВН, лежащий напротив ∠А, равен 3.
Катет равен половине гипотенузы в том случае, если он лежит напротив угла = 30 градусов. Значит, ∠А = 30 градусов.
ответ: ∠А = 30 градусов.
2. Можем применить формулу для нахождения площади треугольника:
S = 1 / 2 * AB * BC * sin120.
Отсюда можем выразить AB = S / (1 / 2 * BC * sin120).
sin120=√3 / 2.
Подставляем значения: AB = 12√3 / (1 / 2 * 6 * √3 / 2) = 8
ответ: 8.
3. Прямоугольник (назовём ABCD) является параллелограммом. Значит точкой пересечения (точка О) диагонали делятся пополам, а по свойству прямоугольника они и равны.
Тогда AO=BO, треугольник-равнобедренный. Т.к. равнобедренный треугольник имеет угол 60°, то становится равносторонним (все углы 60°). Значит, половинки диагоналей (АО и OB) = 4, тогда диагонали (АС и BD) = 4×2=8.
По формуле площади прямоугольника через диагонали, что S прямоугольника равна произведению диагоналей на синус острого угла между ними, получаем: 8×8×sin60° = 64×√3/2 = 32√3.
4. Нет площади. Как решать?
АВ хорда окружности с центром в точке О. Найдите угол АОВ, если угол АВО = 25°.
- - -
Дано :Окружность.
Точка О - центр данной окружности.
Отрезок АВ - хорда окружности.
∠АВО = 25°.
Найти :∠АОВ = ?
Решение :Рассмотрим ΔАВО.
Отрезки АО = ВО (так радиусы одной окружности), следовательно, ΔАВО - равнобедренный (по определению).
У равнобедренного треугольника углы у основания равны.Основание ΔАВО - отрезок АВ (так как АО и ВО - боковые стороны).
Тогда -
∠АВО = ∠ОАВ = 25°.
Сумма внутренних углов треугольника равна 180°.То есть -
∠АВО + ∠ОАВ + ∠АОВ = 180°
∠АОВ = 180° - ∠АВО - ∠ОАВ
∠АОВ = 180° - 25° - 25°
∠АОВ = 130°.
ответ :130°.