Вариант решения без синусов. Основывается на теореме "Если угол одного треугольника равен углу другого, то площади этих треугольников относятся как произведения сторон, заключающих равные углы". Благодаря ей, соотношения площадей, напр. тр-ка АВС и В1А1С будут как ВСхАС/СА1хСВ1. Далее выражаем стороны с индексами через ВС и АС: ВСхАС/1/3ВСх2/3АС. Далее стороны сокращаются, числа перемножаются и получается 9/2 (коэффициент этой пропорции). Таким образом, площадь тр-ка В1А1С будет 27/9/2
решение пусть в выпуклом четырехугольнике abcd ав + cd =вс +ad. (1) точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.
Вариант решения без синусов. Основывается на теореме "Если угол одного треугольника равен углу другого, то площади этих треугольников относятся как произведения сторон, заключающих равные углы". Благодаря ей, соотношения площадей, напр. тр-ка АВС и В1А1С будут как ВСхАС/СА1хСВ1. Далее выражаем стороны с индексами через ВС и АС: ВСхАС/1/3ВСх2/3АС. Далее стороны сокращаются, числа перемножаются и получается 9/2 (коэффициент этой пропорции). Таким образом, площадь тр-ка В1А1С будет 27/9/2
Объяснение:
решение
пусть в выпуклом четырехугольнике abcd
ав + cd =вс +ad. (1)
точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.