ДАНО
c = 5 см - образующая конуса
D = 4 см - диаметр основания.
r= 1 см - диаметр шарика.
НАЙТИ
N =? - число шариков.
РЕШЕНИЕ
Объем конуса по высоте и радиусу основания по формуле:
V = 1/3*π*R²*H
Находим высоту конуса - H по теореме Пифагора.
b = R = D/2 = 4/2 = 2 см -
1) a² = 5² - 2² = 25 - 4 = 21
2) H = a = √21 - высота конуса.
Объем конуса
3) V1 = 1/3*π*4*√21= 4/3*√21*π см³ - объем конуса превращаем в шарики.
Объем шара по формуле - R = 1.
V2 = 4/3*π*R³ = 4/3*π
Находим число полученных шариков - делением.
N = V1 : V2 = √21 ≈ 4.6 ≈ 4 шт - шариков - ОТВЕТ
И еще 0,58 шарика останется
Так как CL - биссектриса прямого угла С, то
∠ACL = ∠LCB = 90° : 2 = 45°;
2) ∠MCB = ∠LCB - ∠LCM = 45° - 15° = 30°
3) Используем свойство : медиана CM, опущенная на гипотенузу прямоугольного треугольника AB, равна половине гипотенузы.
АМ = МВ = СМ.
4) ΔСМВ - равнобедренный, так как СМ=МВ, значит углы при основании равнобедренного треугольника тоже равны:
∠СМВ = ∠МВС = 30°.
5) ∠САВ = 90° - 30° = 60°;
6) ΔАНС - прямоугольный (с прямым углом Н), так как СН - высота.
∠АСН = 90- 60=30°.
7) ∠LCH = ∠ACL - ∠ACH = 45° - 30° = 15°/
ответ: величина угла LCH = 15°.
ДАНО
c = 5 см - образующая конуса
D = 4 см - диаметр основания.
r= 1 см - диаметр шарика.
НАЙТИ
N =? - число шариков.
РЕШЕНИЕ
Объем конуса по высоте и радиусу основания по формуле:
V = 1/3*π*R²*H
Находим высоту конуса - H по теореме Пифагора.
b = R = D/2 = 4/2 = 2 см -
1) a² = 5² - 2² = 25 - 4 = 21
2) H = a = √21 - высота конуса.
Объем конуса
3) V1 = 1/3*π*4*√21= 4/3*√21*π см³ - объем конуса превращаем в шарики.
Объем шара по формуле - R = 1.
V2 = 4/3*π*R³ = 4/3*π
Находим число полученных шариков - делением.
N = V1 : V2 = √21 ≈ 4.6 ≈ 4 шт - шариков - ОТВЕТ
И еще 0,58 шарика останется
Так как CL - биссектриса прямого угла С, то
∠ACL = ∠LCB = 90° : 2 = 45°;
2) ∠MCB = ∠LCB - ∠LCM = 45° - 15° = 30°
3) Используем свойство : медиана CM, опущенная на гипотенузу прямоугольного треугольника AB, равна половине гипотенузы.
АМ = МВ = СМ.
4) ΔСМВ - равнобедренный, так как СМ=МВ, значит углы при основании равнобедренного треугольника тоже равны:
∠СМВ = ∠МВС = 30°.
5) ∠САВ = 90° - 30° = 60°;
6) ΔАНС - прямоугольный (с прямым углом Н), так как СН - высота.
∠АСН = 90- 60=30°.
7) ∠LCH = ∠ACL - ∠ACH = 45° - 30° = 15°/
ответ: величина угла LCH = 15°.