Центр вписанной окружности - точка пересечения биссектрис. На рисунке указаны биссектрисы, выходящие из острых углов прямоугольного треугольника. Пусть угол отмеченный зеленым α, а красным β; 2α+2β = 90°; Значит α+β=45°; Значит тупой угол треугольника, образованного биссектрисами равен 180°-45°=135°. Стороны, прилежащие к этому углу, по условию равны √54 и √10. По теореме косинусов имеем: гипотенуза =
Далее слишком большие вычисления. Они аналогичны тем, что выше. Тоже через теорему косинусов, ну можно местами и синусов :)
Равнобедренный треугольник биссектрисами своих углов и радиусами вписанной окружности разбивается на 6 треугольников - А1, А2, В1, В2, В3, В4 Два типа дочерних треугольников Тип А прямоугольный, угол против катета в 8 см (радиуса) равен 60 градусов Его второй катет а 8/а = tg(60°) 8/а = √3 а = 8/√3 см В периметре исходного треугольника участвуют два катета а Тип В Угол при основании исходного треугольника (180-120)/2 = 30° Острый угол в этих треугольниках равен половине, 15° И катет против угла в 15° равен 8 см, радиусу вписанной окружности катет, прилегающий катет b 8/b = tg(15°) b = 8/tg(15°) = 8/(2-√3) избавимся от иррациональности в знаменателе, домножив на (2+√3) b = 8*(2+√3)/(2²-(√3)²) = 8*(2+√3)/(4-3) = 8*(2+√3) см и в периметре исходного треугольника катеты b встречаются 4 раза P = 2a + 4b = 16/√3 + 32(2+√3) = 16/3*(12 + 7√3) см
Далее слишком большие вычисления. Они аналогичны тем, что выше. Тоже через теорему косинусов, ну можно местами и синусов :)
Два типа дочерних треугольников
Тип А
прямоугольный, угол против катета в 8 см (радиуса) равен 60 градусов
Его второй катет а
8/а = tg(60°)
8/а = √3
а = 8/√3 см
В периметре исходного треугольника участвуют два катета а
Тип В
Угол при основании исходного треугольника (180-120)/2 = 30°
Острый угол в этих треугольниках равен половине, 15°
И катет против угла в 15° равен 8 см, радиусу вписанной окружности
катет, прилегающий катет b
8/b = tg(15°)
b = 8/tg(15°) = 8/(2-√3)
избавимся от иррациональности в знаменателе, домножив на (2+√3)
b = 8*(2+√3)/(2²-(√3)²) = 8*(2+√3)/(4-3) = 8*(2+√3) см
и в периметре исходного треугольника катеты b встречаются 4 раза
P = 2a + 4b = 16/√3 + 32(2+√3) = 16/3*(12 + 7√3) см