1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.
Площадь полной поверхности конуса = сумма площади боковой поверхности и площади основания конуса.
Примем радиус основания равным r.
Тогда площадь основания πr²
Формула площади боковой поверхности конуса πrL. ⇒
Sбок=20πr
По условию πr²+πrL=400⇒⇒
3,14r²+60,28r-400=0
Решив квадратное уравнение, получим r1=5,16, r2 - отрицательный и не подходит.
r=5,16 см
Площадь боковой поверхности πrL=S=π•5,16•20=103,2π - площадь меньшего сектора круга радиусом 20 см
Площадь сектора АОВ=πR²α :360° , где R=L=20 см, α- угол развертки конуса.
π•400•α :360°=103,2π, откуда α=92,88°° = или ≈ 92°53'.
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.
Площадь полной поверхности конуса = сумма площади боковой поверхности и площади основания конуса.
Примем радиус основания равным r.
Тогда площадь основания πr²
Формула площади боковой поверхности конуса πrL. ⇒
Sбок=20πr
По условию πr²+πrL=400⇒⇒
3,14r²+60,28r-400=0
Решив квадратное уравнение, получим r1=5,16, r2 - отрицательный и не подходит.
r=5,16 см
Площадь боковой поверхности πrL=S=π•5,16•20=103,2π - площадь меньшего сектора круга радиусом 20 см
Площадь сектора АОВ=πR²α :360° , где R=L=20 см, α- угол развертки конуса.
π•400•α :360°=103,2π, откуда α=92,88°° = или ≈ 92°53'.