Дано: ABCD-прямоугольник Sabcd=480cм^2 P=92см CD=BD=с-диагонали Найти: Диагонали с П.с надо всё расписывать, и доказывать равность треугольников ABC i CDA. P=2(a+b) S=a×b S=480см^2; P=92см Далее мы подставляем значения и делим на два, но а и б нам неизвестны, потому что могут появляться другие значения: 92=2(a+b)
a+b=92/2 a+b=46 В итоге у нас получилось 46 см, но у нас есть площадь, поэтому составляем систему уровнения: |a×b=480; |a+b=46;
|(46-b)×b=480 |a=46-b В итоге у нас квадратное уровнение 46b-b^2-480=0 | - b^2-46b+480=0
За теоремою Вієта b1+b2=46 b2×b1=480
b1=16 b2=30 a1=30 b2=16 Так у нас получается 2 значения а и б, поэтому: Расмотрим треугольник АBC /C=90° За теоремою Пифагора: c^2=16^2+30^2=256+900=1156
1156 вытаскиваем из корня квадрата и с=34 см ответ: 34 см
Далее мы подставляем значения и делим на два, но а и б нам неизвестны, потому что могут появляться другие значения:
92=2(a+b)
a+b=92/2
a+b=46
В итоге у нас получилось 46 см, но у нас есть площадь, поэтому составляем систему уровнения:
|a×b=480;
|a+b=46;
|(46-b)×b=480
|a=46-b
В итоге у нас квадратное уровнение
46b-b^2-480=0 | -
b^2-46b+480=0
За теоремою Вієта
b1+b2=46
b2×b1=480
b1=16
b2=30
a1=30
b2=16
Так у нас получается 2 значения а и б, поэтому:
Расмотрим треугольник АBC /C=90°
За теоремою Пифагора:
c^2=16^2+30^2=256+900=1156
1156 вытаскиваем из корня квадрата и с=34 см
ответ: 34 см
2часть прямой, состоящая из данной точки и всех точек, лежащих по одну сторону от неё
3 точка отсчета, начало луча
4 бесконечные промежутки (полупрямые) числовой прямой
5 называется начальной точкой
6 Геометрическая фигура состоящая из двух точек А и В и всех точек прямой АВ, лежащих между ними, называется отрезком АВ
7 двумя точками , которые его ограничивают
8 отрезок можно разделить на конечное кол-во отрезков , их длину можно складывать
9 AВ , CD
AB=CD
10 находится на равном расстоянии от обоих концов данного отрезка