В прямоугольном треугольнике больший угол равен 90°. Гипотенуза лежит против угла 90°. Против большего угла лежит большая сторона, • Гипотенуза прямоугольного треугольника больше каждого из катетов. a < c > b
• Две высоты прямоугольного треугольника совпадают с его катетами.
• Высота прямоугольного треугольника, проведенная к гипотенузе, делит его на подобные треугольники.
• Если катет, лежит против угла 30°, он равен половине гипотенузы.
• Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, равна половине гипотенузы и является радиусом описанной около этого треугольника окружности.
• Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
• Высота, проведенная к гипотенузе, - есть среднее пропорциональное между отрезками, на которые она делит гипотенузу ( т.е. между проекциями катетов на гипотенузу)
• Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
• Гипотенуза прямоугольного треугольника больше каждого из катетов. a < c > b
• Сумма острых углов прямоугольного треугольника 180°-90°=90°
• Две высоты прямоугольного треугольника совпадают с его катетами.
• Высота прямоугольного треугольника, проведенная к гипотенузе, делит его на подобные треугольники.
• Если катет, лежит против угла 30°, он равен половине гипотенузы.
• Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, равна половине гипотенузы и является радиусом описанной около этого треугольника окружности.
• Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
• В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов (теорема Пифагора):
c²=a²+b²
• Высота, проведенная к гипотенузе, - есть среднее пропорциональное между отрезками, на которые она делит гипотенузу ( т.е. между проекциями катетов на гипотенузу)
• Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.