Дано: ∆ ABC — прямоугольный; Угол A = 60°; AB = 12 см; BO — высота. Найти: AO, OC.
Решение:
1. Рассмотрим ∆ ABC: угол B = 90°, угол А = 60°, AB = 12 см, BO — высота. Зная, что по теореме сумма всех углов треугольника = 180°, найдем угол C: 180° - угол A - угол B = 180° - 90° - 60° = 30°. По теореме катет, лежащий против угла в 30°, равен 1/2 гипотенузы. Катет AB = 12 см = 1/2 гипотенузы, следовательно, гипотенуза AC равна 12 * 2 = 24 см.
2. Т.к. BO — высота, угол AOB = 90°. Найдем угол ABO (сумма всех углов треугольника = 180°): 180° - угол A - угол O = 180° - 60° - 90° = 30°. Катет, лежащий против угла в 30° = 1/2 гипотенузы. AO = 1/2 AB = 6 см.
3. Найдем OC. Зная, что AC = 24 см, а AO = 6 см, OC = AC - AO = 24 см - 6 см = 18 см.
1. Рассмотрим треуг-ик apf. Он равнобедренный по условию, значит, углы при его основании af равны (<paf=<pfa). Пусть этот неизвестный угол будет х, тогда <bac=x+x=2x, <paf=<pfa=x, <apf=180-(<paf+<pfa)=180-2x. Тогда <bpf=180-<apf=180-(180-2x)=2x. То есть мы видим, что <bac=<bpf=2х. Это соответственные углы при пересечении двух прямых ac и pf секущей ab. Значит, прямые ас и pf параллельны (признак параллельности двух прямых). 2. Рассмотрим треугольники abc и pbf. Они подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого: - угол b - общий; - <bac=<bpf как показано выше. Для подобных треугольников можно записать отношение сходственных сторон: pf : ac = bf : bc = 2 : (2+1) = 2 : 3, отсюда pf = ac*2:3=6*2:3=4 см
∆ ABC — прямоугольный;
Угол A = 60°;
AB = 12 см;
BO — высота.
Найти: AO, OC.
Решение:
1. Рассмотрим ∆ ABC: угол B = 90°, угол А = 60°, AB = 12 см, BO — высота. Зная, что по теореме сумма всех углов треугольника = 180°, найдем угол C: 180° - угол A - угол B = 180° - 90° - 60° = 30°. По теореме катет, лежащий против угла в 30°, равен 1/2 гипотенузы. Катет AB = 12 см = 1/2 гипотенузы, следовательно, гипотенуза AC равна 12 * 2 = 24 см.
2. Т.к. BO — высота, угол AOB = 90°. Найдем угол ABO (сумма всех углов треугольника = 180°): 180° - угол A - угол O = 180° - 60° - 90° = 30°. Катет, лежащий против угла в 30° = 1/2 гипотенузы. AO = 1/2 AB = 6 см.
3. Найдем OC. Зная, что AC = 24 см, а AO = 6 см, OC = AC - AO = 24 см - 6 см = 18 см.
ответ: 6 см и 18 см.
<bac=x+x=2x,
<paf=<pfa=x,
<apf=180-(<paf+<pfa)=180-2x.
Тогда <bpf=180-<apf=180-(180-2x)=2x.
То есть мы видим, что <bac=<bpf=2х. Это соответственные углы при пересечении двух прямых ac и pf секущей ab. Значит, прямые ас и pf параллельны (признак параллельности двух прямых).
2. Рассмотрим треугольники abc и pbf. Они подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого:
- угол b - общий;
- <bac=<bpf как показано выше.
Для подобных треугольников можно записать отношение сходственных сторон:
pf : ac = bf : bc = 2 : (2+1) = 2 : 3, отсюда
pf = ac*2:3=6*2:3=4 см