Контрольна робота з геометрії 8 класу з теми «Подібність трикутників» містить два варіанти по 7 завдань в кожному, 4 з яких – тестові, 3 – вимагають повного розв’язання і обгрунтування
Варіант 1
(3б.) Заповніть пропуски:
а) Якщо ∆ABC ∆MNK, то B = …, M = …, C = …;
б) якщо ∆ABC ∆MNK, то ;
в) Якщо BD — бісектриса кута ABC (рис. 1), то .
У завданнях 2—4 виберіть правильну відповідь. (Кожне завдання оцінюється 1 б.)
∆АВС ∆А1В1С1, АС = 8 см, А1В1 =12 см, В1С1 =14 см, А1С1= 16 см. Знайдіть сторони АВ і ВС.
а) 24 см, 28 см; б) 6 см, 7 см; в) 14 см, 16 см.
∆АВС ∆А1В1С1, АВ = 7 см, ВС = 6 см, АС = 5 см. Знайдіть периметр трикутника A1B1C1, якщо В1С1 = 2 см.
а) 6 см; б) 24 см; в) 36 см.
Катет прямокутного трикутника дорівнює 10 см, а його проекція на гіпотенузу — 8 см. Знайдіть гіпотенузу цього трикутника,
а) 1,25 см; б) 6 см; в) 12,5 см.
Розв’яжіть задачі 5—7 з повним поясненням.
(1 б.) За даними рис. 2 доведіть подібність трикутників ABE і CDE.
(2 б.) Дві сторони трикутника дорівнюють 6 см і 8 см. Бісектриса трикутника, що проведена до третьої сторони, поділяє її на відрізки, більший з яких дорівнює 4 см. Знайдіть периметр трикутника.
(3 б.) В трапеції ABCD її основи AB і CD дорівнюють відповідно 9 см і 12 см, а одна з діагоналей дорівнює 14 см. На які відрізки ділиться ця діагональ точкою перетину діагоналей?
Существует множество различных видов симметрии. К простейшим из них относятся: а) симметрия относительно плоскости (зеркальная симметрия); б) симметрия относительно точки (центральная симметрия); в) симметрия относительно прямой (осевая симметрия); г) симметрия вращения; д) цилиндрическая симметрия; е) сферическая симметрия. Один из вариантов (в): Две фигуры называются симметричными относительно некоторой прямой, если при перегибании плоскости чертежа по этой прямой они совмещаются. В данной задаче вряд ли требуется перегибать плоскость бумаги. Пусть требуется построить треугольник, симметричный данному относительно оси симметрии АВ. Опустим из каждой вершины треугольника перпендикуляр к АВ. Затем на продолжениях этих перпендикуляров отложим отрезки, равные расстоянию от вершин треугольника до АВ. Соединим эти отрезки. Получившийся треугольник будет симметричным данному относительно прямой АВ. Т.е. если перегнуть чертеж по прямой АВ, то соответствующие вершины треугольника совместятся и совместятся сами треугольники.
Контрольна робота з геометрії 8 класу з теми «Подібність трикутників» містить два варіанти по 7 завдань в кожному, 4 з яких – тестові, 3 – вимагають повного розв’язання і обгрунтування
Варіант 1
(3б.) Заповніть пропуски:
а) Якщо ∆ABC ∆MNK, то B = …, M = …, C = …;
б) якщо ∆ABC ∆MNK, то ;
в) Якщо BD — бісектриса кута ABC (рис. 1), то .
У завданнях 2—4 виберіть правильну відповідь. (Кожне завдання оцінюється 1 б.)
∆АВС ∆А1В1С1, АС = 8 см, А1В1 =12 см, В1С1 =14 см, А1С1= 16 см. Знайдіть сторони АВ і ВС.
а) 24 см, 28 см; б) 6 см, 7 см; в) 14 см, 16 см.
∆АВС ∆А1В1С1, АВ = 7 см, ВС = 6 см, АС = 5 см. Знайдіть периметр трикутника A1B1C1, якщо В1С1 = 2 см.
а) 6 см; б) 24 см; в) 36 см.
Катет прямокутного трикутника дорівнює 10 см, а його проекція на гіпотенузу — 8 см. Знайдіть гіпотенузу цього трикутника,
а) 1,25 см; б) 6 см; в) 12,5 см.
Розв’яжіть задачі 5—7 з повним поясненням.
(1 б.) За даними рис. 2 доведіть подібність трикутників ABE і CDE.
(2 б.) Дві сторони трикутника дорівнюють 6 см і 8 см. Бісектриса трикутника, що проведена до третьої сторони, поділяє її на відрізки, більший з яких дорівнює 4 см. Знайдіть периметр трикутника.
(3 б.) В трапеції ABCD її основи AB і CD дорівнюють відповідно 9 см і 12 см, а одна з діагоналей дорівнює 14 см. На які відрізки ділиться ця діагональ точкою перетину діагоналей?
а) симметрия относительно плоскости (зеркальная симметрия);
б) симметрия относительно точки (центральная симметрия);
в) симметрия относительно прямой (осевая симметрия);
г) симметрия вращения;
д) цилиндрическая симметрия;
е) сферическая симметрия.
Один из вариантов (в):
Две фигуры называются симметричными относительно некоторой прямой, если при перегибании плоскости чертежа по этой прямой они совмещаются.
В данной задаче вряд ли требуется перегибать плоскость бумаги.
Пусть требуется построить треугольник, симметричный данному относительно оси симметрии АВ.
Опустим из каждой вершины треугольника перпендикуляр к АВ.
Затем на продолжениях этих перпендикуляров отложим отрезки, равные расстоянию от вершин треугольника до АВ. Соединим эти отрезки.
Получившийся треугольник будет симметричным данному относительно прямой АВ. Т.е. если перегнуть чертеж по прямой АВ, то соответствующие вершины треугольника совместятся и совместятся сами треугольники.