Рассмотрим только один случай из трех . ABC-треугольник , опустим высоту CH на сторону AB и AF на сторону BC , центр вписанной окружности лежит в точке пересечения биссектрис, положим что DE || AC опустим перпендикуляры OL=r и OG=r на стороны AB и BC соответственно (r-радиус вписанной окружности). Из подобия треугольников ODL и CAH получаем DO/LO = AC/CH = 1/sin(BAC) DO=r/sin(BAC) Но r=S/p = AB*AC*sinA/(AB+AC+BC) значит DO=AB*AC/(AB+AC+BC) = b*c/(a+b+c) Аналогично OE/OG=AC/CF=1/sin(ACB) OE=r/sin(ACB) OE=AC*BC/(AC+BC+AB) = a*b/(a+b+c) Значит DE=DO+OE=b(a+c)/(b+a+c)
Остальные так же, отрезок параллельный AB || c(a+b)/(a+b+c), BC || a(b+c)/(a+b+c)
ABC-треугольник , опустим высоту CH на сторону AB и AF на сторону BC , центр вписанной окружности лежит в точке пересечения биссектрис, положим что DE || AC опустим перпендикуляры OL=r и OG=r на стороны AB и BC соответственно (r-радиус вписанной окружности).
Из подобия треугольников ODL и CAH получаем
DO/LO = AC/CH = 1/sin(BAC)
DO=r/sin(BAC)
Но r=S/p = AB*AC*sinA/(AB+AC+BC) значит
DO=AB*AC/(AB+AC+BC) = b*c/(a+b+c)
Аналогично
OE/OG=AC/CF=1/sin(ACB)
OE=r/sin(ACB)
OE=AC*BC/(AC+BC+AB) = a*b/(a+b+c)
Значит DE=DO+OE=b(a+c)/(b+a+c)
Остальные так же, отрезок параллельный AB || c(a+b)/(a+b+c), BC || a(b+c)/(a+b+c)
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты).
Как это получается?
Объяснение: Диагональ ВD делит параллелограмм площадью 42 ед. на два равных треугольника. Площадь каждого 42:2=21 ед.
Ѕ ∆ АРD = 16 ед (дано), => Ѕ ∆ РВD=21-16=5 (ед).
Треугольники АРD и РВD имеют общую высоту DH. Соответственно:
S(ADP)=AP•DH:2
S(PBD)=PB•DH:2 => S(ADP):S(PBD)=(AP•DH:2):(PB•DH:2) = АР:РВ =>
АР:РВ=S(ADP):S(PBD)=16:5 (см. рисунок приложения).