Поскольку стороны ромба равны, а центр вписанной окружности (которая касается всех сторон ромба) находится на пересечении диагоналей ромба, получается, что ромб делится диагоналями на равные прямоугольные треугольники с прямым углом в центре окружности. Радиус окружности ОМ, проведённый к месту, где окружность касается стороны ромба ВС, представляет собой высоту треугольника ВОС, являющуюся также медианой и биссектрисой, и разделяющей треугольник ВОС на две равные части - треугольники ОМС и ОМВ.
Чтобы вычислить площадь ромба, надо вычислить площадь треугольника ОСВ и умножить получившееся число на 4. А площадь треугольника СВ легко вычислить, умножив высоту ОМ на сторону и разделив на 2. Получится 10*3:2 = 15. А умножив 15 на 4 - получаем 60. Это и есть площадь ромба
1) Можно определить угол между двумя лучами из одной точки как часть полного угла.
Тогда рассматриваются углы от О° до 360° (невыпуклые - от 0° до 180°, выпуклые - от 180° до 360°).
Можно определить угол как поворот луча от начального положения против часовой (положительное направление) или по часовой стрелке (отрицательное).
Тогда угол может принимать любые положительные и отрицательные значения.
Поворот при котором луч возвращается в начальное положение (то есть поворот на полный угол) называется оборот.
2) 450° = 5/4 оборота против часовой стрелки = 5/2 п
–225° = 5/8 оборота по часовой стрелке = -5/4 п
3) 1° =1/360 полного угла
4) 1 радиан - в единичной окружности угловая мера дуги длиной 1.
(то есть в единичной окружности центральный угол, опирающийся на дугу длиной 1)
5-6) Угловая мера полного угла в радианах 2п (длина единичной окружности). Угловая мера полного угла в градусах 360°.
180°=п(рад)
ф°/180° = x(рад)/п
ф=30°, x =30° *п/180° =п/6
x=п/4, ф =п/4 *180°/п =45°
Дано:
В ромб ABCD вписана окружность О.
АВ = 10 см
ОМ - радиус вписанной окружности.
ОМ = 3 см.
Найти: S ромба
Поскольку стороны ромба равны, а центр вписанной окружности (которая касается всех сторон ромба) находится на пересечении диагоналей ромба, получается, что ромб делится диагоналями на равные прямоугольные треугольники с прямым углом в центре окружности. Радиус окружности ОМ, проведённый к месту, где окружность касается стороны ромба ВС, представляет собой высоту треугольника ВОС, являющуюся также медианой и биссектрисой, и разделяющей треугольник ВОС на две равные части - треугольники ОМС и ОМВ.
Чтобы вычислить площадь ромба, надо вычислить площадь треугольника ОСВ и умножить получившееся число на 4. А площадь треугольника СВ легко вычислить, умножив высоту ОМ на сторону и разделив на 2. Получится 10*3:2 = 15. А умножив 15 на 4 - получаем 60. Это и есть площадь ромба