Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка. Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая. Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину. Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы). Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).
1. За теоремою про вертикальні кути, кут АОВ = куту DOC.
Маємо АОВ = куту DOC, DO=OB, AO=OC, тому трикутник АОВ=COD за першою ознакою рівності трикутників.
2. За теоремою про вертикальні кути, МКN=PKE.
Маємо МКN=PKE, MNK=KPE, NK=KP, тому трикутник KNM=KPE за другою ознакою рівності трикутників.
3. Маємо кут ВАС=DAC, BA=AD, AC - спільна сторона, тому трикутник АСВ=ACD за першою ознакою рівності трикутників.
4. Маємо ВС=АD, CBD=ADB, BD - спільна сторона, тому трикутник BDA=BDC за першою ознакою рівності трикутників.
5. Маємо DFM=DFE, MDF=EDF, DF - спільна сторона, тому трикутник DMF=DEF за другою ознакою рівності трикутників.
6. Маємо МАР=NPA, NAP=MPA, AP - спільна сторона, тому трикутник РМА=ANP за другою ознакою рівності трикутників.
8. Маємо ABD=CDB, ADB=CBD, BD - спільна сторона, тому трикутник ADB=CDB за другою ознакою рівності трикутників.
9. AD=BF, DB - спільна частина, тому AB=DF.
Маємо AB=DF, АВС=EDF, EFD=АСВ, тому трикутник АВС=DFЕ за другою ознакою рівності трикутників.
10. Оскільки кут EBD=DAE, AC=BC, то BD=AE.
Маємо кут EBD=DAE, BD=AE, вертикальні кути рівні(на малюнку немає точки, не можу позначити), то трикутники рівні (немає точки, не можу позначити) за другою ознакою рівності трикутників.
Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.
Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину.
Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы).
Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).
Объяснение:
1. За теоремою про вертикальні кути, кут АОВ = куту DOC.
Маємо АОВ = куту DOC, DO=OB, AO=OC, тому трикутник АОВ=COD за першою ознакою рівності трикутників.
2. За теоремою про вертикальні кути, МКN=PKE.
Маємо МКN=PKE, MNK=KPE, NK=KP, тому трикутник KNM=KPE за другою ознакою рівності трикутників.
3. Маємо кут ВАС=DAC, BA=AD, AC - спільна сторона, тому трикутник АСВ=ACD за першою ознакою рівності трикутників.
4. Маємо ВС=АD, CBD=ADB, BD - спільна сторона, тому трикутник BDA=BDC за першою ознакою рівності трикутників.
5. Маємо DFM=DFE, MDF=EDF, DF - спільна сторона, тому трикутник DMF=DEF за другою ознакою рівності трикутників.
6. Маємо МАР=NPA, NAP=MPA, AP - спільна сторона, тому трикутник РМА=ANP за другою ознакою рівності трикутників.
8. Маємо ABD=CDB, ADB=CBD, BD - спільна сторона, тому трикутник ADB=CDB за другою ознакою рівності трикутників.
9. AD=BF, DB - спільна частина, тому AB=DF.
Маємо AB=DF, АВС=EDF, EFD=АСВ, тому трикутник АВС=DFЕ за другою ознакою рівності трикутників.
10. Оскільки кут EBD=DAE, AC=BC, то BD=AE.
Маємо кут EBD=DAE, BD=AE, вертикальні кути рівні(на малюнку немає точки, не можу позначити), то трикутники рівні (немає точки, не можу позначити) за другою ознакою рівності трикутників.