Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 50²= Х² +(Х-10)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 5±√(25+1200) = 40см.
Тогда половина меньшей диагонали равна 40-10 = 30см и площадь одного треугольника равна (1/2)*30*40 = 600см². Таких треугольников в ромбе четыре.
S = 2400 см²
Объяснение:
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 50²= Х² +(Х-10)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 5±√(25+1200) = 40см.
Тогда половина меньшей диагонали равна 40-10 = 30см и площадь одного треугольника равна (1/2)*30*40 = 600см². Таких треугольников в ромбе четыре.
Площадь ромба равна 4*600 = 2400см²