Обозначим пирамиду АВСS(смотри рисунок). Пирамида правильная значит в основании лежит правильный треугольник( обозначим его сторону а) и высота ОS пирамиды проецируется в центр основания. Кратчайшее расстояние МК перпендикулярна АS. Из треугольника SВК найдём боковое ребро. Прямоугольные треугольники АМК и АSО подобны по острому углу SАО. Отсюда находим Н. Дальше по теореме Пифагора, из треугольника АSО находим выражение а квадрат. Подставляем найденные значения в известную формулу. ответ на рисунке.
В треугольнике ABC ∠С = 90°, AB = 5, tgA = 7/24. Найдите AC.
===========================================================
▪Первый теорема Пифагора ):tgA = BC/AC = 7/24Пусть ВС = 7х, АС = 24х, тогда Применим теорему Пифагора:АС² + ВС² = АВ²( 24х )² + ( 7х )² = 5²576х² + 49х² = 25625х² = 25х² = 1/25 ⇒ х = 1/5 = 0,2 Значит, АС = 24х = 24•0,2 = 4,8▪Второй Тригонометрия ):tg²A + 1 = 1/cos²Acos²A = 1/( tg²A + 1 ) = 1/( (7/24)² + 1 ) = 1/( 625/576 ) = 576/625cosA = ± 24/25 ⇒ ∠A - острый ⇒ cosA = 24/25cosA = AC/AB = 24/25 ⇒ AC = ( 5 • 24 )/25 = 24/5 = 4,8ОТВЕТ: 4,8