Здесь надо рассмотреть 2 прямоугольных треугольника, у которых по одному катету равны (это нормали к параллельным плоскостям). Обозначим х - длина одного отрезка, у - длина другого. Составим систему из двух уравнений (1 - по Пифагору, 2 - из условия): 1) х² - 18² = у² - 10² 2) 13х = 15у. х = 15у / 13. х² = 225у² / 169 Подставим последнее выражение в 1 уравнение: (225у² / 169) - 18² = у² - 10² (225у² / 169) - у² = - 10² + 18² (225у² / 169) - у² = 224 56у² = 37856 у² = 676 у = 26 см, х = 15*26 / 13 = 30 см.
пусть m – точка пересечения диагоналей ac и bd четырёхугольника abcd. применим неравенство треугольника к треугольникам abc, adc, bad и bcd: ac < ab + bc, ac < da + dc, bd < ab + ad, bd < cb + cd. сложив эти четыре неравенства, получим: 2(ac + bd) < 2(ab + bc + cd + ad).
запишем неравенства треугольника для треугольников amb, bmc, cmd и amd: am + mb > ab, bm + mc > bc, mc + md > cd, ma + md > ad. сложив эти неравенства, получим: 2(ac + bd) > ab + bc + cd + ad.
Обозначим х - длина одного отрезка, у - длина другого.
Составим систему из двух уравнений (1 - по Пифагору, 2 - из условия):
1) х² - 18² = у² - 10²
2) 13х = 15у.
х = 15у / 13. х² = 225у² / 169
Подставим последнее выражение в 1 уравнение:
(225у² / 169) - 18² = у² - 10²
(225у² / 169) - у² = - 10² + 18²
(225у² / 169) - у² = 224
56у² = 37856
у² = 676 у = 26 см,
х = 15*26 / 13 = 30 см.
пусть m – точка пересечения диагоналей ac и bd четырёхугольника abcd. применим неравенство треугольника к треугольникам abc, adc, bad и bcd: ac < ab + bc, ac < da + dc, bd < ab + ad, bd < cb + cd. сложив эти четыре неравенства, получим: 2(ac + bd) < 2(ab + bc + cd + ad).
запишем неравенства треугольника для треугольников amb, bmc, cmd и amd: am + mb > ab, bm + mc > bc, mc + md > cd, ma + md > ad. сложив эти неравенства, получим: 2(ac + bd) > ab + bc + cd + ad.