Знайдіть радіус кола, вписаного трикутник зі сторонами 10 см, 17 см і 21 см. 6. Сторони трикутника дорівнюють 7 см, 11 см і 12 см. Знайдіть медіану трикутника, проведену до його більшої сторони
Из точки а к плоскости проведены перпендикуляр ао и две равные наклонные ав и ас.известно,что вс=во.найдите углы треугольника вос.решение а /| \ в / | \с оав=асвс=воесли две стороны во и вс равны, значит со=вс=во(только у меня получилось, угол вос=180 град, но по факту 60 град)из этого следует, что всо - треугольник равностороннйи, а значит углы равны 60 град
AC биссектриса, значит <BAC = <CAD = 45°
В ΔBAC <B прямой, <BAC 45°, значит <BCA тоже 45°. Значит ΔABC равнобедренный: AB = BC = x
По теореме пифагора:
AC² = BA² + BC²
36 = x² + x²
2x² = 36
x² = 18
x = 3*√2
AB = BC = 3*√2
Из точки C опустим перпендикуляр. CH перпендикулярен AD, CH = AB = 3√2
Из ΔCHD
tg<HDC = CH/HD
tg60° = 3√2/HD
HD = 3√2/tg60°
HD = 3√2/√3
HD = 3√6/3 = √6
AD = BC + HD = 3√2 + √6
S = (BC+AD)*CH/2
S = ((3√2 + 3√2 + √6)* 3√2)/2 = ((6 √2 + √6)* 3√2)/2 = (18*2 + 3*√12)/2 = (18*2 + 3*2√3)/2 = 18 + 3√3
ответ: 18 + 3√3