Треугольники ABC и DEF вписаны в одну и ту же окружность. Доказать, что равенство их периметров равносильно условию sin A + sin B + sin C = sin D + sin E + sin F.
Доказательство.
Рассмотрим треугольник ABC. Согласно теореме синусов
AB/sin C = BC/sin A = AC/sin B = 2R или sin C/AB = sin A/BC = sin B/AC = 1/(2R).
sin C = AB/(2R); sin A = BC/(2R); sin B = AC/(2R).
sin A + sin B + sin C = (BC + AC + AB) / (2R) = P1/(2R).
sin A + sin B + sin C = P1/(2R), где P1 – периметр треугольника ABC.
Аналогично, из треугольника DFE имеем:
sin D + sin E + sin F = (EF + DF + DE) / (2R) = P2/(2R), где P2 – периметр треугольника DFE .
Легко видеть, что если P1 = P2, то sin A + sin B + sin C = sin D + sin E + sin F и наоборот.
проведём произвольную прямую и отметим на ней точку. построим прямую, перпендикулярную к нашей прямой и проходящую через отмеченную точку. Для этого строим окружность произвольного радиуса с центром в отмеченной точке. Эта окружность пересекает прямую в двух точках. Замеряем циркулем расстояние между этими точками и проводит окружности этого радиуса из точек пересечения и окружности. Эти окружности пересекаются в двух точках, проведём прямую через эти точки и получим две перпендикулярные прямые. на любой из них откладываем от точки пересечения длину катета и строим окружность из конца этого катета радиусом равным длине гипотенузы. Отметим точку пересечения этой окружности и перпендикулярной прямой, соединим её и конец катета, получим прямоугольный треугольник
с
Треугольники ABC и DEF вписаны в одну и ту же окружность. Доказать, что равенство их периметров равносильно условию sin A + sin B + sin C = sin D + sin E + sin F.
Доказательство.
Рассмотрим треугольник ABC. Согласно теореме синусов
AB/sin C = BC/sin A = AC/sin B = 2R или
sin C/AB = sin A/BC = sin B/AC = 1/(2R).
sin C = AB/(2R); sin A = BC/(2R); sin B = AC/(2R).
sin A + sin B + sin C = (BC + AC + AB) / (2R) = P1/(2R).
sin A + sin B + sin C = P1/(2R), где P1 – периметр треугольника ABC.
Аналогично, из треугольника DFE имеем:
sin D + sin E + sin F = (EF + DF + DE) / (2R) = P2/(2R), где P2 – периметр треугольника DFE .
Легко видеть, что если P1 = P2, то sin A + sin B + sin C = sin D + sin E + sin F и наоборот.
Задача 2.
проведём произвольную прямую и отметим на ней точку. построим прямую, перпендикулярную к нашей прямой и проходящую через отмеченную точку. Для этого строим окружность произвольного радиуса с центром в отмеченной точке. Эта окружность пересекает прямую в двух точках. Замеряем циркулем расстояние между этими точками и проводит окружности этого радиуса из точек пересечения и окружности. Эти окружности пересекаются в двух точках, проведём прямую через эти точки и получим две перпендикулярные прямые. на любой из них откладываем от точки пересечения длину катета и строим окружность из конца этого катета радиусом равным длине гипотенузы. Отметим точку пересечения этой окружности и перпендикулярной прямой, соединим её и конец катета, получим прямоугольный треугольник