Сечением будет равнобедренная трапеция, т.к. основания призмы лежат в параллельных плоскостях, то секущая плоскость их будет пересекать по параллельным прямым.
Пусть К и М середины рёбер АС и ВС, тогда МК средняя линия, по свойству она параллельна третьей стороне АВ и равна её половине - 4 см (стороны основания равны по 8см)
Секущая плоскость проходит через точку А1 и параллельна МК, т.е. совпадает с А1В1 (МК II АВ II А1В1). А1В1МК - трапеция с основаниями А1В1=8см и МК=4см
Боковые стороны равны из равенства прямоугольных треугольников АА1К и ВВ1М (по двум катетам). А1К и В1М - гипотенузы этих треугольников. Их находим по теореме Пифагора √3²+4²=√9+16=√25=5см.
Задача 2. Т.к. BM - биссектриса, то ∠CBM=∠MBA Рассмотрим ΔABC: ∠C=90° (по усл), ∠A=30° (по усл) ⇒ ∠B = 180° - (90°+30°)=60°⇒ ∠CBM=∠MBA=1/2∠B=30° Рассмотрим ΔAMB: ∠MAB = ∠ABM ⇒ треугольник равнобедренный ⇒ MA=MB=6 см Рассмотрим ΔCMB: ∠C=90°, ∠MBC=30°. Вспоминаем, что катет, лежащий против угла 30° равен половине гипотенузы ⇒MC = 1/2 MB = 3 см AC = AM + MC = 6 см + 3 см = 9 см
Сечением будет равнобедренная трапеция, т.к. основания призмы лежат в параллельных плоскостях, то секущая плоскость их будет пересекать по параллельным прямым.
Пусть К и М середины рёбер АС и ВС, тогда МК средняя линия, по свойству она параллельна третьей стороне АВ и равна её половине - 4 см (стороны основания равны по 8см)
Секущая плоскость проходит через точку А1 и параллельна МК, т.е. совпадает с А1В1 (МК II АВ II А1В1). А1В1МК - трапеция с основаниями А1В1=8см и МК=4см
Боковые стороны равны из равенства прямоугольных треугольников АА1К и ВВ1М (по двум катетам). А1К и В1М - гипотенузы этих треугольников. Их находим по теореме Пифагора √3²+4²=√9+16=√25=5см.
Р=4+8+2·5=22см
∠BMC = ∠EMD = 70° (вертикальные углы).
Рассмотрим четырехугольник AEMD:
∠BAC = 360° - (∠AEM + ∠ADM +∠EMD) (сумма углов четырехугольника = 360°)
т.к. BD и CE - высоты (по усл) , то ∠AEM = ∠MDA = 90°.
Найдем ∠BAC:
∠BAC = 360° - (90° + 90° + 70°) = 110°
∠ABC = 180° - (∠ACB + ∠BAC) (сумма углов треугольника = 180°)
∠ABC = 180° - (45° + 110°) = 25°.
ответ: 25°
Задача 2.
Т.к. BM - биссектриса, то ∠CBM=∠MBA
Рассмотрим ΔABC: ∠C=90° (по усл), ∠A=30° (по усл) ⇒
∠B = 180° - (90°+30°)=60°⇒ ∠CBM=∠MBA=1/2∠B=30°
Рассмотрим ΔAMB: ∠MAB = ∠ABM ⇒ треугольник равнобедренный ⇒ MA=MB=6 см
Рассмотрим ΔCMB: ∠C=90°, ∠MBC=30°. Вспоминаем, что катет, лежащий против угла 30° равен половине гипотенузы ⇒MC = 1/2 MB = 3 см
AC = AM + MC = 6 см + 3 см = 9 см