В стереометрии изучаются пространственные фигуры, однако на чертеже они изображаются в виде плоских фигур. Каким же образом следует изображать пространственную фигуру на плоскости? Обычно в геометрии для этого используется параллельное проектирование.
Пусть p - некоторая плоскость, l - пересекающая ее прямая (рис. 1). Через произвольную точку A, не принадлежащую прямой l, проведем прямую, параллельную прямой l. Точка пересечения этой прямой с плоскостью p называется параллельной проекцией точки A на плоскость p в направлении прямой l. Обозначим ее A'. Если точка A принадлежит прямой l, то параллельной проекцией A на плоскость p считается точка пересечения прямой l с плоскостью p.
Таким образом, каждой точке A пространства сопоставляется ее проекция A' на плоскость p. Это соответствие называется параллельным проектированием на плоскость p в направлении прямой l.
Пусть Ф - некоторая фигура в пространстве. Проекции ее точек на плоскость p образуют фигуру Ф', которая называется параллельной проекцией фигуры Ф на плоскость p в направлении прямой l. Говорят также, что фигура Ф' получена из фигуры Ф параллельным проектированием.
Примеры параллельных проекций дают, например, тени предметов под воздействием пучка параллельных солнечных лучей.
Рассмотрим свойства параллельного проектирования.
Свойство 1. Если прямая параллельна или совпадает с прямой l, то ее проекцией в направлении этой прямой является точка. Если прямая не параллельна и не совпадает с прямой l, то ее проекцией является прямая.
Доказательство. Ясно, что если прямая k параллельна или совпадает с прямой l, то ее проекцией в направлении этой прямой на плоскость p будет точка пересечения прямой l и плоскости p. Пусть k не параллельна и не совпадает с прямой l (рис. 2). Возьмем какую-нибудь точку A на прямой k и проведем через нее прямую a, параллельную l. Ее пересечение с плоскостью проектирования p даст точку A', являющуюся проекцией точки A. Через прямые a и k проведем плоскость a . Ее пересечением с плоскостью p будет искомая прямая k', являющаяся проекцией прямой k.
Колонна, состоящая из тринадцати роботов, движется со скоростью 4 см/с. Когда первый робот колонны поравнялся с роботом-инспектором, то робот – инспектор поехал вдоль колонны со скоростью 60 дм/мин, а достигнув её конца, развернулся и вернулся к первому роботу в колонне. Скорость колонны и робота-инспектора постоянны. Длина колонны роботов равна 2 м 10 см. Определите, какой путь проедет робот-инспектор, пока он снова нагонит первого робота в колонне. Временем на разворот можно пренебречь. ответ дайте в дециметрах. В ответ запишите только число.
ПАРАЛЛЕЛЬНОЕ ПРОЕКТИРОВАНИЕ
В стереометрии изучаются пространственные фигуры, однако на чертеже они изображаются в виде плоских фигур. Каким же образом следует изображать пространственную фигуру на плоскости? Обычно в геометрии для этого используется параллельное проектирование.
Пусть p - некоторая плоскость, l - пересекающая ее прямая (рис. 1). Через произвольную точку A, не принадлежащую прямой l, проведем прямую, параллельную прямой l. Точка пересечения этой прямой с плоскостью p называется параллельной проекцией точки A на плоскость p в направлении прямой l. Обозначим ее A'. Если точка A принадлежит прямой l, то параллельной проекцией A на плоскость p считается точка пересечения прямой l с плоскостью p.
Таким образом, каждой точке A пространства сопоставляется ее проекция A' на плоскость p. Это соответствие называется параллельным проектированием на плоскость p в направлении прямой l.
Пусть Ф - некоторая фигура в пространстве. Проекции ее точек на плоскость p образуют фигуру Ф', которая называется параллельной проекцией фигуры Ф на плоскость p в направлении прямой l. Говорят также, что фигура Ф' получена из фигуры Ф параллельным проектированием.
Примеры параллельных проекций дают, например, тени предметов под воздействием пучка параллельных солнечных лучей.
Рассмотрим свойства параллельного проектирования.
Свойство 1. Если прямая параллельна или совпадает с прямой l, то ее проекцией в направлении этой прямой является точка. Если прямая не параллельна и не совпадает с прямой l, то ее проекцией является прямая.
Доказательство. Ясно, что если прямая k параллельна или совпадает с прямой l, то ее проекцией в направлении этой прямой на плоскость p будет точка пересечения прямой l и плоскости p. Пусть k не параллельна и не совпадает с прямой l (рис. 2). Возьмем какую-нибудь точку A на прямой k и проведем через нее прямую a, параллельную l. Ее пересечение с плоскостью проектирования p даст точку A', являющуюся проекцией точки A. Через прямые a и k проведем плоскость a . Ее пересечением с плоскостью p будет искомая прямая k', являющаяся проекцией прямой k.
Объяснение:
Колонна, состоящая из тринадцати роботов, движется со скоростью 4 см/с. Когда первый робот колонны поравнялся с роботом-инспектором, то робот – инспектор поехал вдоль колонны со скоростью 60 дм/мин, а достигнув её конца, развернулся и вернулся к первому роботу в колонне. Скорость колонны и робота-инспектора постоянны. Длина колонны роботов равна 2 м 10 см. Определите, какой путь проедет робот-инспектор, пока он снова нагонит первого робота в колонне. Временем на разворот можно пренебречь. ответ дайте в дециметрах. В ответ запишите только число.