Сподсчётами всё плохо что нашла то можно так: уравнение прямой, проходящей через две данные точки, имеет вид (у - у0) / (у1 - у0) = (х - х0) / (х1 - х0) подставив координаты точек, будем иметь (у - 5) / (11 - 5) = (х - 1) / (-2 - 1) (у - 5) / 6 = (х - 1) / (-3) -3(у - 5) = 6(х - 1) -3у + 15 = 6х - 6 6х + 3у - 21 = 0 2х + у - 7 = 0 - это уравнение прямой, проходящей через точки m(1; 5) и n(-2; 11). у = - 2х + 7 можно еще так: уравнение прямой имеет вид у = kx + b поставим координаты данных точек. получим 5 = k + b 11 = -2k + b вычитая из первого равенства второе, будем иметь -6 = 3k, отсюда k = -2. 5 = -2 + b, отсюда b = 7 подставив значения k и b в уравнение прямой, получим у = -2х + 7 ответ. у = -2х + 7ня
AD= 10, т.к. сторона лежащая против угла в 30° равна половине гипотенузы
По св-ву ромба, все стороны равны
6) 88 (то же самое, что и в первом), но + формула периметра P ромба=4*22
7) 20, т.к. треугольник BOC прямоугольный, по свойству ромба, следовательно угол BCO =30°, дальше так же как и в первых двух
8) треугольник СOD прямоугольный
СD= 24, т.к. сторона лежащая против угла в 30° равна половине гипотенузы, т.к. треугольник DOC прямоугольный, по свойству ромба, следовательно угол DCO =30°
5) треугольник AOD прямоугольный
AD= 10, т.к. сторона лежащая против угла в 30° равна половине гипотенузы
По св-ву ромба, все стороны равны
6) 88 (то же самое, что и в первом), но + формула периметра P ромба=4*22
7) 20, т.к. треугольник BOC прямоугольный, по свойству ромба, следовательно угол BCO =30°, дальше так же как и в первых двух
8) треугольник СOD прямоугольный
СD= 24, т.к. сторона лежащая против угла в 30° равна половине гипотенузы, т.к. треугольник DOC прямоугольный, по свойству ромба, следовательно угол DCO =30°
P ромба= 4×28=112