Параллелограмм - четырехугольник, у которого противоположные стороны параллельны и равны. То есть если мы назовем параллелограмм ABCD, то АВ = СD и BC = AD.
Если две стороны относятся как 3:1, то они не равны. Значит это не могут быть противоположные стороны. Значит, это "ширина" и "длина". Из того, что периметр параллелограмма состоит из 2 "длин" и 2 "ширин", исходит, что эти две стороны являются полупериметром. Весь периметр это 32 см, значит полупериметр это 32\2 = 16 см.
Эти 2 стороны относятся 3:1. Если одна сторона это 1 часть, то другая сторона - это 3 части. В сумме 1 + 3 = 4 части. Эти 4 части являются полупериметром. Значит 1 часть это 16 \ 4 = 4 см.
Наименьшая сторона параллелограмма равнялась 1 части. Ее длина: 4*1 = 4 см
Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
4 см
Объяснение:
Параллелограмм - четырехугольник, у которого противоположные стороны параллельны и равны. То есть если мы назовем параллелограмм ABCD, то АВ = СD и BC = AD.
Если две стороны относятся как 3:1, то они не равны. Значит это не могут быть противоположные стороны. Значит, это "ширина" и "длина". Из того, что периметр параллелограмма состоит из 2 "длин" и 2 "ширин", исходит, что эти две стороны являются полупериметром. Весь периметр это 32 см, значит полупериметр это 32\2 = 16 см.
Эти 2 стороны относятся 3:1. Если одна сторона это 1 часть, то другая сторона - это 3 части. В сумме 1 + 3 = 4 части. Эти 4 части являются полупериметром. Значит 1 часть это 16 \ 4 = 4 см.
Наименьшая сторона параллелограмма равнялась 1 части. Ее длина: 4*1 = 4 см
Если остались вопросы - спрашивайте!
Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
Значит, Sполн = π · ОВ · (ОВ + SВ) = π · 6 · (6 + 10) = 6π · 16 = 96π (см²).
ответ: 96 см².