Зточки поза площиною, проведено до неї дві похилі, довжини яких дорівнюють 15см і 27см. сума довжин проекцій цих похилих на площину дорівнює 24см. знайти проекцію кожної з похилих
Окружность проходит через вершины C и D трапеции ABCD касается боковой стороны AB в точке B и пересекает большее основание AD в точке K. Известно, что AB=5√3,BC=5, KD=10.Найти радиус окружности.
* * * AD и BC основания трапеции * * *
решение : Фактически нужно определить радиус окружности около трапеции KBCD. Очевидно трапеция равнобедренная ⇒ BK = DC и ∡BKD + ∡DCB =180°. Необходимо определить некоторые ее элементы
AB / DB = AK / DC = DC/ BC ; DC =√AK*BC = √5*5 = 5
AB / DB = AK / DC ⇒ DB = AB*DC/AK =5√3 *5/5 = 5√3 .
Все : ΔBCD || ΔBKD || определены однозначно с тремя сторонами
Вычислить радиус окружности не представляет трудности _
в крайнем случае можно применить формулу R = abc/4S , где
S =√p(p-a)(p-b)(p-c) ( площадь по формуле Герона ).
Но в данной задаче можно заметить ,что центр O окружности совпадает со серединой отрезка KD. R =OK=OD = 5 учитывая ,что KO =DO =5= BC ⇒ четырехугольники KBCO , BCDO параллелограмм поэтому OK =DC =OB и OD=KB =OC
* * * Расчет длины радиуса еще и упрощается ввиду того , что Δ BCD оказался прямоугольным ,по обратной теореме Пифагора :
AB² +BD² =5² +(5√3)² =100 =10² = KD² . || R =5 ||
* * * не так трудно радиус определить из равнобедренного ΔBKD со сторонами BC=CD=5 ; BD=5√3 * * *
Якщо на одній прямій накреслить перше коло О₁ радіус якого дорівнює 32 см, то отримаємо відрізки перетинання кола з прямою АО₁ та О₁В. При цьму відрізки АО₁ = О₁В = r = 32 см.
На цій же прямій відкладем відрізок ВО₂, який дорівнює 12 см, та накреслим коло радіус якого дорівнює довжині відрізка ВО₂. Таким чином отримаємо другий відрізок О₂С.
При цьму відрізки ВО₂ = О₂С = r = 12 см.
Два кола торкаються, тоді відстань між центрами цих кіл дорівнює:
О₁В + ВО₂ = 32 + 12 = 44 см
Відстань між центрами цих кіл О₁ та О₂ дорівнює 44 см.
Другий розв'язок:
Накреслим коло О₃ з радіусом 32 см. Проведемо діаметр цього кола, та отримаємо відрізки DO₃ та О₃N, при цьому DO₃ = О₃N = r = 32 см.
На відрізку О₃N відкладемо відрізок NО₄ довжиною 12 см.
Накреслим коло с центром О₄ радіусом довжини відрізка = 12 см.
На відрізку DN отримаємо відрізки МО₄ та О₄N при цьому МО₄ = О₄N = r = 12см.
Два кола торкаються, тоді відстань між центрами цих кіл дорівнює.
Так як відрізок О₃О₄ належить відрізку O₃N, тоді можемо знайти відрізок О₃О₄.
О₃М = О₃N - MO₄ - O₄N
O₃M = 32 - 12 - 12 = 8 cм
O₃O₄ = O₃M + MO₄
O₃O₄ = 8 + 12 = 20 см
Відстань між центрами цих кіл О₃ та О₄ дорівнює 20 см.
* * * * * * * * * * * * * * * * * * * * * * * * *
Окружность проходит через вершины C и D трапеции ABCD касается боковой стороны AB в точке B и пересекает большее основание AD в точке K. Известно, что AB=5√3,BC=5, KD=10.Найти радиус окружности.
* * * AD и BC основания трапеции * * *
решение : Фактически нужно определить радиус окружности около трапеции KBCD. Очевидно трапеция равнобедренная ⇒ BK = DC и ∡BKD + ∡DCB =180°. Необходимо определить некоторые ее элементы
1.
AB²=AD*AK ( известная теорема)
* * * ΔABK ~ ΔADB * * *
AB²=(AK+KD) *AK || AK =x > 0 ||
x(x+10) =(5√3)² ⇔ x² + 10x - 75 =0 ( корни разного знака )
x₁ = - 15 _посторонний , x₂ = 5 теорема Виета ИЛИ x₁, ₂ = -5 ± 10
AK = 5
2.
ΔABK ~ ΔDBC (по второму признаку )
(∡ABK = ◡ BK/2 = ∡BDK = ∡DBC и ∡AKB=180°- ∡BKD = ∡DCB )
AB / DB = AK / DC = BK/ BC ⇔ ( учитывая BK = DC)
AB / DB = AK / DC = DC/ BC ; DC =√AK*BC = √5*5 = 5
AB / DB = AK / DC ⇒ DB = AB*DC/AK =5√3 *5/5 = 5√3 .
Все : ΔBCD || ΔBKD || определены однозначно с тремя сторонами
Вычислить радиус окружности не представляет трудности _
в крайнем случае можно применить формулу R = abc/4S , где
S =√p(p-a)(p-b)(p-c) ( площадь по формуле Герона ).
Но в данной задаче можно заметить ,что центр O окружности совпадает со серединой отрезка KD. R =OK=OD = 5 учитывая ,что KO =DO =5= BC ⇒ четырехугольники KBCO , BCDO параллелограмм поэтому OK =DC =OB и OD=KB =OC
* * * Расчет длины радиуса еще и упрощается ввиду того , что Δ BCD оказался прямоугольным ,по обратной теореме Пифагора :
AB² +BD² =5² +(5√3)² =100 =10² = KD² . || R =5 ||
* * * не так трудно радиус определить из равнобедренного ΔBKD со сторонами BC=CD=5 ; BD=5√3 * * *
Объяснение:
Ця задача має два розв'язка.
Перший розв'язок:
Якщо на одній прямій накреслить перше коло О₁ радіус якого дорівнює 32 см, то отримаємо відрізки перетинання кола з прямою АО₁ та О₁В. При цьму відрізки АО₁ = О₁В = r = 32 см.
На цій же прямій відкладем відрізок ВО₂, який дорівнює 12 см, та накреслим коло радіус якого дорівнює довжині відрізка ВО₂. Таким чином отримаємо другий відрізок О₂С.
При цьму відрізки ВО₂ = О₂С = r = 12 см.
Два кола торкаються, тоді відстань між центрами цих кіл дорівнює:
О₁В + ВО₂ = 32 + 12 = 44 см
Відстань між центрами цих кіл О₁ та О₂ дорівнює 44 см.
Другий розв'язок:
Накреслим коло О₃ з радіусом 32 см. Проведемо діаметр цього кола, та отримаємо відрізки DO₃ та О₃N, при цьому DO₃ = О₃N = r = 32 см.
На відрізку О₃N відкладемо відрізок NО₄ довжиною 12 см.
Накреслим коло с центром О₄ радіусом довжини відрізка = 12 см.
На відрізку DN отримаємо відрізки МО₄ та О₄N при цьому МО₄ = О₄N = r = 12см.
Два кола торкаються, тоді відстань між центрами цих кіл дорівнює.
Так як відрізок О₃О₄ належить відрізку O₃N, тоді можемо знайти відрізок О₃О₄.
О₃М = О₃N - MO₄ - O₄N
O₃M = 32 - 12 - 12 = 8 cм
O₃O₄ = O₃M + MO₄
O₃O₄ = 8 + 12 = 20 см
Відстань між центрами цих кіл О₃ та О₄ дорівнює 20 см.