Звершини а квадрата аbcd до його площини проведено перпендикуляр ак завдовжки 6 см . знайти відстань від точки к до вершини с квадрата , якщо його сторона дорівнює 4√2
Диагонали трапеции делят ее на 4 треугольника. Треугольники, прилегающие к основаниям трапеции, подобны по первому признаку подобия: "Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны", т.к <CAD=<ACB, а <BDA=<DBC как внутренние накрест лежащие при параллельных прямых AD и ВС и секущих АС и ВD соответственно. Итак, треугольники АОD и СОВ подобны с коэффициентом подобия ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7. ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.
Итак, треугольники АОD и СОВ подобны с коэффициентом подобия
ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7.
ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.
В прямоугольном треугольнике АКС угол К равен 60° (дано). =>
∠САК = 30°, значит АК - биссектриса угла А.
Биссектриса делит противоположную сторону в отношении прилежащих сторон (свойство). Тогда СК/КВ = АС/АВ.
Но АВ = 2·АС (так как катет АС лежит против угла В, равного 30°). =>
СК/КВ = АС/(2АС) = 1/2. =>
СК = КВ/2 = 12/2 = 6 см.
Или так:
∠АКС = 60° (дано) => ∠САК = 30° (по сумме острых углов прямоугольного треугольника САК). => ∠ВАК = 30°. =>
Треугольник АКВ равнобедренный, так как ∠В = 30° (по сумме острых углов прямоугольного треугольника АВС). и ∠ВАК = 30° (доказано выше). =>
АК = ВК = 12 см.
В прямоугольном треугольнике АКС угол КАС = 30°, значит
СК = АК/2 = 12/2 = 6см.
Или так:
Пусть СК = х. => ВС = 12+х.
В прямоугольном треугольнике АВС угол В равен 30° по сумме острых углов.
Tg(∠B) = tg30 = AC/BC = √3/3. =>
AC = √3·(12+х)/3. (1)
В прямоугольном треугольнике АКС угол К равен 60° (дано).
Tg(∠К) = tg60 = AC/CК = √3. =>
AC = х√3. (2).
Приравняем (1) и (2): √3·(12+х)/3 = х√3. => 12+х = 3х. =>
СК = х = 6 см.