Допустим, у нас есть сообщение «habr», которое необходимо передать без ошибок. Для этого сначала нужно наше сообщение закодировать при Кода Хэмминга. Нам необходимо представить его в бинарном виде.На этом этапе стоит определиться с, так называемой, длиной информационного слова, то есть длиной строки из нулей и единиц, которые мы будем кодировать. Допустим, у нас длина слова будет равна 16. Таким образом, нам необходимо разделить наше исходное сообщение («habr») на блоки по 16 бит, которые мы будем потом кодировать отдельно друг от друга. Так как один символ занимает в памяти 8 бит, то в одно кодируемое слово помещается ровно два ASCII символа. Итак, мы получили две бинарные строки по 16 битбит. распараллеливается, и две части сообщения («ha» и «br») кодируются независимо друг от друга. Рассмотрим, как это делается на примере первой части.
Прежде всего, необходимо вставить контрольные биты. Они вставляются в строго определённых местах — это позиции с номерами, равными степеням двойки. В нашем случае (при длине информационного слова в 16 бит) это будут позиции 1, 2, 4, 8, 16. Соответственно, у нас получилось 5 контрольных бит (выделены красным цветом)Таким образом, длина всего сообщения увеличилась на 5 бит. До вычисления самих контрольных бит, мы присвоили им значение «0».
/*Решение с обобщения формула Брахмагупты для произвольного четырехугольника. Функция perimeter(double x[], double y[]) возвращает значение периметра, функция area(double x[], double y[]) возвращает значение площади, пример использования и реализация приведены ниже. */
#include <iostream>
#include <math.h>
double perimeter(double x[], double y[]);
double area(double x[], double y[]);
int main()
{
double x[4], y[4];
std::cout << "Quadrangle ABCD\n";
for (auto i = 0; i < 4; i++)
{
std::cout << "Input coordinates of point " << char(i + 'A') << ": ";
Объяснение:
Допустим, у нас есть сообщение «habr», которое необходимо передать без ошибок. Для этого сначала нужно наше сообщение закодировать при Кода Хэмминга. Нам необходимо представить его в бинарном виде.На этом этапе стоит определиться с, так называемой, длиной информационного слова, то есть длиной строки из нулей и единиц, которые мы будем кодировать. Допустим, у нас длина слова будет равна 16. Таким образом, нам необходимо разделить наше исходное сообщение («habr») на блоки по 16 бит, которые мы будем потом кодировать отдельно друг от друга. Так как один символ занимает в памяти 8 бит, то в одно кодируемое слово помещается ровно два ASCII символа. Итак, мы получили две бинарные строки по 16 битбит. распараллеливается, и две части сообщения («ha» и «br») кодируются независимо друг от друга. Рассмотрим, как это делается на примере первой части.
Прежде всего, необходимо вставить контрольные биты. Они вставляются в строго определённых местах — это позиции с номерами, равными степеням двойки. В нашем случае (при длине информационного слова в 16 бит) это будут позиции 1, 2, 4, 8, 16. Соответственно, у нас получилось 5 контрольных бит (выделены красным цветом)Таким образом, длина всего сообщения увеличилась на 5 бит. До вычисления самих контрольных бит, мы присвоили им значение «0».
/*Решение с обобщения формула Брахмагупты для произвольного четырехугольника. Функция perimeter(double x[], double y[]) возвращает значение периметра, функция area(double x[], double y[]) возвращает значение площади, пример использования и реализация приведены ниже. */
#include <iostream>
#include <math.h>
double perimeter(double x[], double y[]);
double area(double x[], double y[]);
int main()
{
double x[4], y[4];
std::cout << "Quadrangle ABCD\n";
for (auto i = 0; i < 4; i++)
{
std::cout << "Input coordinates of point " << char(i + 'A') << ": ";
std::cin >> x[i] >> y[i];
}
std::cout << perimeter(x, y) << " " << area(x, y);
return 0;
}
double perimeter(double x[], double y[])
{
double a[4], p = 0;
for (auto i = 0; i < 4; i++)
{
a[i] = sqrt((x[i]-x[(i + 1) % 4]) * (x[i]-x[(i + 1) % 4]) + (y[i]-y[(i + 1) % 4]) * (y[i]-y[(i + 1) % 4]));
p += a[i];
}
return p;
}
double area(double x[], double y[])
{
double a[4], p = 0, s = 1, d[2];
for (auto i = 0; i < 4; i++)
{
a[i] = sqrt((x[i]-x[(i + 1) % 4]) * (x[i]-x[(i + 1) % 4]) + (y[i]-y[(i + 1) % 4]) * (y[i]-y[(i + 1) % 4]));
p += a[i];
}
for (auto i = 0; i < 4; i++)
{
s *= (p / 2- a[i]);
}
for (auto i = 0; i < 2; i++)
{
d[i] = sqrt((x[i]-x[i + 2]) * (x[i]-x[i + 2]) + (y[i]-y[i + 2]) * (y[i]-y[i + 2]));
}
s -= (a[0] * a[2] + a[1] * a[3] + d[0] * d[1]) * (a[0] * a[2] + a[1] * a[3] - d[0] * d[1]) / 4;
s = sqrt(s);
return s;
}