ответ:Отношение — это взаимная связь, в которой находятся какие-либо объекты.
Одним и тем же отношением могут быть попарно связаны несколько объектов. Соответствующее словесное описание может оказаться очень длинным, и тогда в нём трудно разобраться.
Пусть про населённые пункты А, Б, В, Г, Д и Е известно, что некоторые из них соединены железной дорогой: населённый пункт А соединён железной дорогой с населёнными пунктами В, Г и Е, населённый пункт Е — с населёнными пунктами А, В, Г и Д.
Для большей наглядности имеющиеся связи («соединён железной дорогой») можно изобразить линиями на схеме отношений. Объекты на схеме отношений могут быть изображены кругами, овалами, точками, прямоугольниками и т. д.
Имена некоторых отношений изменяются, когда меняются местами имена объектов, например: «выше* — «ниже», «приходится отцом» — «приходится сыном». В этом случае направление отношения на схеме отношений обозначают стрелкой.
Так, на рис. 4 каждая стрелка направлена от отца к его сыну и поэтому отражает отношение «приходится отцом», а не «приходится сыном». Например: «Андрей приходится отцом Ивану».
Стрелки можно не использовать, если удаётся сформулировать и соблюсти правило взаимного расположения объектов на схеме. Например, если на рис. 5 имена детей всегда располагать ниже имени их отца, то можно обойтись без стрелок.
Такие отношения, как «приходится сыном», «соединён железной дорогой», «покупает», «лечит» и т. д., могут связывать только объекты некоторых видов. В отношениях «является элементом множества», «входит в состав» и «является разновидностью» могут находиться любые объекты.
Отношения могут существовать не только между двумя объектами, но и между объектом и множеством объектов, например:
Отношение «входит в состав»
В зависимости от ситуации объект может либо рассматриваться как единое целое, либо «распадаться» на более мелкие объекты. Например, компьютер рассматривается как единое целое, если нужно подсчитать количество компьютеров в школе. Чтобы получить представление о возможностях компьютера, необходимо рассмотреть характеристики таких его устройств, как процессор, память, жёсткий диск и т. д.
Объект может состоять из множества одинаковых (однородных, подобных) объектов. Например, объект «апельсин» состоит из частей — долек апельсина. Объект «школьный класс» состоит из множества учеников — мальчиков и девочек приблизительно одного возраста. Каждый ученик является целой, самостоятельной частью объекта «школьный класс».
Объект может состоять из множества различных объектов. Например, объект «компьютер» состоит из множества не похожих друг на друга объектов (системный блок, монитор, клавиатура и т. д.). При делении объекта «компьютер» на части новые объекты получают разные имена; признаки новых объектов различны.
При описании состава объектов в одних случаях речь идет о составе конкретного объекта, а в других — об общих составных частях множества объектов. В последнем случае описание состава содержит ответ на вопрос «Из чего обычно состоят объекты некоторого множества?». Например:
«в состав дома входят стены, крыша, двери, окна, ...»;
«в составе автомобиля есть двигатель, кузов, багажник, ...».
Описывая состав объекта, человек мысленно «разбирает» его на части. При этом, как правило, используют такой приём: сначала называют небольшое число крупных частей, затем каждую из них «разбирают» на части поменьше и т. д. Например, при описании состава дома удобно выделить сначала фундамент, стены и крышу, затем в составе стены выделить окно и дверь, затем сообщить, что окно состоит из рамы и стёкол, и так же поступить, описывая состав двери (рис. 10).
Схема отношений «входит в состав» (схема состава) отражает не только составные части, но и тот порядок, в котором предмет «разбирался» на части. Таким образом, она отражает строение (структуру) объекта. На схеме состава можно использовать линии без стрелок, если имя объекта-части располагать ниже имени объекта, которому принадлежит эта часть.
// PascalABC.NET 3.0, сборка 1156 от 30.01.2016 function Avg(a:array[,] of integer):real; begin var s:=0; var k:=0; foreach var e:integer in a do if e>0 then begin s+=e; Inc(k) end; if k>0 then Result:=s/k else Result:=1e-100; end;
begin var A:=MatrixRandom(4,4,-50,50); Writeln(A); Writeln('Среднее арифметическое положительных равно ',Avg(A):0:3); var B:=MatrixRandom(5,5,-30,30); Writeln(B); Writeln('Среднее арифметическое положительных равно ',Avg(B):0:3); var C:=MatrixRandom(4,5,-25,38); Writeln(C); Writeln('Среднее арифметическое положительных равно ',Avg(C):0:3); end.
Тестовое решение: [[35,35,5,-47],[14,34,35,-13],[25,-5,35,-29],[-7,10,-12,12]] Среднее арифметическое положительных равно 24.000 [[-12,-17,-10,19,14],[20,17,-27,-2,16],[-3,-21,30,2,10],[5,-3,-17,-3,18],[0,-26,29,1,-22]] Среднее арифметическое положительных равно 15.083 [[-5,-11,17,-4,15],[15,17,-24,36,15],[-8,-3,-22,28,-25],[-21,6,12,31,-1]] Среднее арифметическое положительных равно 19.200
ответ:Отношение — это взаимная связь, в которой находятся какие-либо объекты.
Одним и тем же отношением могут быть попарно связаны несколько объектов. Соответствующее словесное описание может оказаться очень длинным, и тогда в нём трудно разобраться.
Пусть про населённые пункты А, Б, В, Г, Д и Е известно, что некоторые из них соединены железной дорогой: населённый пункт А соединён железной дорогой с населёнными пунктами В, Г и Е, населённый пункт Е — с населёнными пунктами А, В, Г и Д.
Для большей наглядности имеющиеся связи («соединён железной дорогой») можно изобразить линиями на схеме отношений. Объекты на схеме отношений могут быть изображены кругами, овалами, точками, прямоугольниками и т. д.
Имена некоторых отношений изменяются, когда меняются местами имена объектов, например: «выше* — «ниже», «приходится отцом» — «приходится сыном». В этом случае направление отношения на схеме отношений обозначают стрелкой.
Так, на рис. 4 каждая стрелка направлена от отца к его сыну и поэтому отражает отношение «приходится отцом», а не «приходится сыном». Например: «Андрей приходится отцом Ивану».
Стрелки можно не использовать, если удаётся сформулировать и соблюсти правило взаимного расположения объектов на схеме. Например, если на рис. 5 имена детей всегда располагать ниже имени их отца, то можно обойтись без стрелок.
Такие отношения, как «приходится сыном», «соединён железной дорогой», «покупает», «лечит» и т. д., могут связывать только объекты некоторых видов. В отношениях «является элементом множества», «входит в состав» и «является разновидностью» могут находиться любые объекты.
Отношения могут существовать не только между двумя объектами, но и между объектом и множеством объектов, например:
Отношение «входит в состав»
В зависимости от ситуации объект может либо рассматриваться как единое целое, либо «распадаться» на более мелкие объекты. Например, компьютер рассматривается как единое целое, если нужно подсчитать количество компьютеров в школе. Чтобы получить представление о возможностях компьютера, необходимо рассмотреть характеристики таких его устройств, как процессор, память, жёсткий диск и т. д.
Объект может состоять из множества одинаковых (однородных, подобных) объектов. Например, объект «апельсин» состоит из частей — долек апельсина. Объект «школьный класс» состоит из множества учеников — мальчиков и девочек приблизительно одного возраста. Каждый ученик является целой, самостоятельной частью объекта «школьный класс».
Объект может состоять из множества различных объектов. Например, объект «компьютер» состоит из множества не похожих друг на друга объектов (системный блок, монитор, клавиатура и т. д.). При делении объекта «компьютер» на части новые объекты получают разные имена; признаки новых объектов различны.
При описании состава объектов в одних случаях речь идет о составе конкретного объекта, а в других — об общих составных частях множества объектов. В последнем случае описание состава содержит ответ на вопрос «Из чего обычно состоят объекты некоторого множества?». Например:
«в состав дома входят стены, крыша, двери, окна, ...»;
«в составе автомобиля есть двигатель, кузов, багажник, ...».
Описывая состав объекта, человек мысленно «разбирает» его на части. При этом, как правило, используют такой приём: сначала называют небольшое число крупных частей, затем каждую из них «разбирают» на части поменьше и т. д. Например, при описании состава дома удобно выделить сначала фундамент, стены и крышу, затем в составе стены выделить окно и дверь, затем сообщить, что окно состоит из рамы и стёкол, и так же поступить, описывая состав двери (рис. 10).
Схема отношений «входит в состав» (схема состава) отражает не только составные части, но и тот порядок, в котором предмет «разбирался» на части. Таким образом, она отражает строение (структуру) объекта. На схеме состава можно использовать линии без стрелок, если имя объекта-части располагать ниже имени объекта, которому принадлежит эта часть.
function Avg(a:array[,] of integer):real;
begin
var s:=0; var k:=0;
foreach var e:integer in a do
if e>0 then begin s+=e; Inc(k) end;
if k>0 then Result:=s/k else Result:=1e-100;
end;
begin
var A:=MatrixRandom(4,4,-50,50); Writeln(A);
Writeln('Среднее арифметическое положительных равно ',Avg(A):0:3);
var B:=MatrixRandom(5,5,-30,30); Writeln(B);
Writeln('Среднее арифметическое положительных равно ',Avg(B):0:3);
var C:=MatrixRandom(4,5,-25,38); Writeln(C);
Writeln('Среднее арифметическое положительных равно ',Avg(C):0:3);
end.
Тестовое решение:
[[35,35,5,-47],[14,34,35,-13],[25,-5,35,-29],[-7,10,-12,12]]
Среднее арифметическое положительных равно 24.000
[[-12,-17,-10,19,14],[20,17,-27,-2,16],[-3,-21,30,2,10],[5,-3,-17,-3,18],[0,-26,29,1,-22]]
Среднее арифметическое положительных равно 15.083
[[-5,-11,17,-4,15],[15,17,-24,36,15],[-8,-3,-22,28,-25],[-21,6,12,31,-1]]
Среднее арифметическое положительных равно 19.200