Если запись числа оканчивается на 8, то система счисления (далее - с/с) не может иметь основание меньше чем 8+1=9. В этой системе счисления представление числа 30 будет двухзначным (с одного разряда может быть представлено число, не превышающее 8, а двух разрядов достаточно для записи числа 9²-1=80, что превышает 30).
Двухзначное число может быть записано в с/с по основанию n следующим образом: na+b. По условию число оканчивается цифрой 8 и его значение равно 30. Получаем уравнение: na+8=30 ⇒ na=22. Раскладываем 22 на простые множители: 22=1х2х11 Решение уравнения в целых числах при условии n>8 дает два варианта ответов: (n=11, a=2), (n=22, a=1). Это порождает два числа: Существует ли с/с по основанию n, в которой запись числа 30 будет одноразрядной? Уравнение 8n=30 не имеет решений в целых числах, поэтому такой с/с не существует. ответ: 30(10)=18(22)=28(11).
Приведём все степени к основанию 2
2^3702-2^468+2^1620-108
-108 можно представить как -128 + 16 + 4
2^3702-2^468+2^1620-2^7 + 2^4 + 2^2
Теперь выстраиваем степени в порядке убывания:
2^3702+2^1620-2^468-2^7 + 2^4 + 2^2
В выражении два вычитания подряд, избавимся от этого, заменив -2^468 на -2^469 + 2^468
2^3702+2^1620 -2^469+2^468-2^7 + 2^4 + 2^2
2^3702 - 1 единица
2^4 - 1 единица
2^2 - 1 единица
Количество единиц в вычитаниях будет равно разнице степеней. Например 1000000-100=1111
2^1620 -2^469 - количеств единиц 1620-469 = 1151
2^468-2^7 - количество единиц 468-7 = 461
Общее количество единиц равно 3+1151+461 = 1615
Двухзначное число может быть записано в с/с по основанию n следующим образом: na+b. По условию число оканчивается цифрой 8 и его значение равно 30. Получаем уравнение:
na+8=30 ⇒ na=22.
Раскладываем 22 на простые множители: 22=1х2х11
Решение уравнения в целых числах при условии n>8 дает два варианта ответов:
(n=11, a=2), (n=22, a=1).
Это порождает два числа:
Существует ли с/с по основанию n, в которой запись числа 30 будет одноразрядной?
Уравнение 8n=30 не имеет решений в целых числах, поэтому такой с/с не существует.
ответ: 30(10)=18(22)=28(11).