Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать (10, 7). Тогда за один ход можно получить любую из четырёх позиций: (11, 7), (30, 7), (10, 8), (10, 21). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 67. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в кучах будет 67 или больше камней. В начальный момент в первой куче было 5 камней, во второй куче – S камней; 1 ≤ S ≤ 61.
Задание 3
Укажите значение S, при котором одновременно выполняются два условия:
− у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
− у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
begin
var a:=ArrRandom(100,-10,10);
a.Println;
Writeln(a.Where(x->x>0).Count,' положительных, ',
a.Where(x->x<0).Count,' отрицательных')
end.
Тестовое решение:
4 -6 0 8 2 -2 -1 -8 -6 8 -3 7 4 -7 -5 9 0 -3 -7 1 0 -4 6 3 8 -10 4 9 3 5 8 5 5 8 10 4 -8 3 8 8 -9 2 7 -8 -7 -5 2 -9 0 9 -7 7 -2 -6 7 -2 -1 7 -10 2 4 1 -1 0 10 3 -8 6 -6 2 6 7 -1 -4 -1 8 0 3 0 2 -2 2 -1 5 1 -9 -4 1 -9 1 -6 -5 3 -4 -7 1 -7 -3 -7 1
51 положительных, 42 отрицательных