1) полная таблица истинности каждого выражения с пятью переменными содержит 2^5 = 32 строки;
2) в каждой таблице содержится по 4 единицы и по 28 нулей, ( то есть 32-4);
3) выражение a v - b равно нулю тогда, когда a = 0 или b = 1;
4) min количество единиц в таблице истинности выражения a v - b будет тогда, когда там будет наибольшее число нулей, то есть в max количество строк одновременно a = 0 и b = 1;
5) по условию a = 0 в 28 строках, и b = 1 в 4 строках, поэтому выражение a v - b может быть равно нулю не более чем в 4 строках, а оставшиеся 32 – 4 = 28 могут быть равны 1.
Разветвляющимися называется такой алгоритм, в котором выбирается один из нескольких возможных вариантов вычислительного процесса. каждый подобный путь называет "ветвью алгоритма".
признаком разветвляющегося алгоритма является наличие операций проверки условия. различают два вида условий – простые и составные.
простым условием (отношением) называется выражение, составленное из двух арифметических выражений или двух текстовых величин (иначе их еще ), связанных одним из знаков:
< - меньше,
> - больше,
< = - меньше, или равно
> = - больше, или равно
< > - не равно
= - равно
например, простыми отношениями являются следующие:
1) полная таблица истинности каждого выражения с пятью переменными содержит 2^5 = 32 строки;
2) в каждой таблице содержится по 4 единицы и по 28 нулей, ( то есть 32-4);
3) выражение a v - b равно нулю тогда, когда a = 0 или b = 1;
4) min количество единиц в таблице истинности выражения a v - b будет тогда, когда там будет наибольшее число нулей, то есть в max количество строк одновременно a = 0 и b = 1;
5) по условию a = 0 в 28 строках, и b = 1 в 4 строках, поэтому выражение a v - b может быть равно нулю не более чем в 4 строках, а оставшиеся 32 – 4 = 28 могут быть равны 1.
ответ: 28.
Объяснение:
признаком разветвляющегося алгоритма является наличие операций проверки условия. различают два вида условий – простые и составные.
простым условием (отношением) называется выражение, составленное из двух арифметических выражений или двух текстовых величин (иначе их еще ), связанных одним из знаков:
< - меньше,
> - больше,
< = - меньше, или равно
> = - больше, или равно
< > - не равно
= - равно
например, простыми отношениями являются следующие:
x-y> 10; k< =sqr(c)+abs(a+b); 9< > 11; ‘мама’< > ‘папа’.
в примерах первые два отношения включают в себя переменные, поэтому о верности этих отношений можно судить только при подстановке некоторых значений:
если х=25, у=3, то отношение x-y> 10 будет верным, т.к. 25-3> 10
если х=5, у=30, то отношение x-y> 10 будет неверным, т.к. 5-30< 10
проверьте верность второго отношения при подстановке следующих значений:
а) k=5, a=1, b=-3, c=-8
b) k=65, a=10, b=-3, c=2