1) Один байт = 8 бит, максимальное число 2^8 - 1 = 255, если числа без знака. Для знаковых чисел старший бит отводится под знак числа, следовательно, минимальное число = - 2^7 - 1 = - 127, максимальное число = + 127 2) Число 1607, ячейка двухбайтовая, один бит под знак, следовательно, под число отводится 15 бит, в двоичном представлении 1607(10) = 11001000111(2), дополняем до 16 бит, старший бит - знаковый - нулевой, так как число положительное = 0000011001000111(2) - это двоичное представление в двухбайтовой ячейке, чтобы получить шестнадцатиричное представление, разбиваем число справа - налево по 4 бита 0000 0110 0100 0111 и записываем в шестнадцатиричном виде 0111(2) = 7(16) 0100(2) = 4(16) 0110(2) =6(16) 0000(2) = 0(16) 1607(16) = 0647(16) или без старшего не значащего нуля = 647(16) 3) для получения дополнительного кода числа, находят обратное число, или инверсию числа, для этого каждый бит числа изменяют на противоположный, 1 на 0, 0 на 1 105(10) = 1101001(2) - это и есть дополнительный код числа - 105, т.е. дополнительным кодом числа (- а) будет число а. Найдем дополнительный код в однобайтовой ячейке числа 105(10) = 01101001(2), а) находим обратное 01101001(2) ->(обратное) ->10010110(2) б) дополнительный код-> обратный код + 1 ->(дополнительный)->10010111(2), а это число - 105 потому, что отрицательные числа представляются в дополнительном коде. Если для числа - 105 найти дополнительный код, то получим число 105 10010111(2)->(дополнительный)->01101000+1->01101001 = 69(16) = 16*6+9 = 96+9 = 105
Я уже решал эту задачу. Я руками за 5 дней делаю 5 коробок, и на 6-ой день покупаю духовку. Руками и духовкой я делаю 2 коробки в день, за 5 дней - 10 коробок. На 6-ой день я покупаю вторую духовку. Руками и 2-мя духовками я за 5 дней делаю 15 коробок, и на 6-ой день покупаю 3-ью духовку. И так далее. Чтобы купить очередную духовку, я работаю 5 дней, а на 6-ой день ее покупаю, и у меня печенья не остается совсем. То есть, после покупки каждой духовки я начинаю всё с нуля. Главное - понять, когда нужно остановиться покупать духовки и начать уже копить печенье на складе. Итак, подведем итоги: 1) На покупку каждой духовки мы тратим 6 суток и начинаем с нуля. 2) Имея n духовок, мы делаем 584 коробок печенья за trunc(584/(n+1)) + 1 дней, где trunc(x) = [x] - это целая часть x. 3) Всего мы тратим времени T(n) = 6n + trunc(584/(n+1)) + 1 --> min Минимум функции trunc(584/(n+1)) совпадает с минимумом 584/(n+1) T(n) = 6n + 584/(n+1) + 1 --> min T'(n) = 6 - 584/(n+1)^2 = (6(n+1)^2 - 584) / (n+1)^2 = 0 6(n+1)^2 - 584 = 0 (n+1)^2 = 584/6 = 97,33 n + 1 = √97,33 ~ 9,86 = 10 n = 9 Значит, нужно ограничиться покупкой 9 духовок. За 6*9 = 54 дня мы их купим, и за 584/10 ~ 59 дней мы соберем нужное количество коробок на складе. Всего мы истратим 54 + 59 = 113 дней.
= - 127, максимальное число = + 127
2) Число 1607, ячейка двухбайтовая, один бит под знак, следовательно, под число отводится 15 бит, в двоичном представлении 1607(10) = 11001000111(2), дополняем до 16 бит, старший бит - знаковый - нулевой, так как число положительное
= 0000011001000111(2) - это двоичное представление в двухбайтовой ячейке, чтобы получить шестнадцатиричное представление, разбиваем число справа - налево по 4 бита
0000 0110 0100 0111 и записываем в шестнадцатиричном виде
0111(2) = 7(16) 0100(2) = 4(16) 0110(2) =6(16) 0000(2) = 0(16)
1607(16) = 0647(16) или без старшего не значащего нуля = 647(16)
3) для получения дополнительного кода числа, находят обратное число, или инверсию числа,
для этого каждый бит числа изменяют на противоположный, 1 на 0, 0 на 1
105(10) = 1101001(2) - это и есть дополнительный код числа - 105, т.е. дополнительным кодом
числа (- а) будет число а.
Найдем дополнительный код в однобайтовой ячейке числа 105(10) = 01101001(2),
а) находим обратное 01101001(2) ->(обратное) ->10010110(2)
б) дополнительный код-> обратный код + 1 ->(дополнительный)->10010111(2), а это число - 105
потому, что отрицательные числа представляются в дополнительном коде.
Если для числа - 105 найти дополнительный код, то получим число 105
10010111(2)->(дополнительный)->01101000+1->01101001 = 69(16) = 16*6+9 = 96+9 = 105
Я руками за 5 дней делаю 5 коробок, и на 6-ой день покупаю духовку.
Руками и духовкой я делаю 2 коробки в день, за 5 дней - 10 коробок.
На 6-ой день я покупаю вторую духовку.
Руками и 2-мя духовками я за 5 дней делаю 15 коробок, и на 6-ой день покупаю 3-ью духовку.
И так далее. Чтобы купить очередную духовку, я работаю 5 дней, а на 6-ой день ее покупаю, и у меня печенья не остается совсем.
То есть, после покупки каждой духовки я начинаю всё с нуля.
Главное - понять, когда нужно остановиться покупать духовки и начать уже копить печенье на складе.
Итак, подведем итоги:
1) На покупку каждой духовки мы тратим 6 суток и начинаем с нуля.
2) Имея n духовок, мы делаем 584 коробок печенья за
trunc(584/(n+1)) + 1 дней, где trunc(x) = [x] - это целая часть x.
3) Всего мы тратим времени T(n) = 6n + trunc(584/(n+1)) + 1 --> min
Минимум функции trunc(584/(n+1)) совпадает с минимумом 584/(n+1)
T(n) = 6n + 584/(n+1) + 1 --> min
T'(n) = 6 - 584/(n+1)^2 = (6(n+1)^2 - 584) / (n+1)^2 = 0
6(n+1)^2 - 584 = 0
(n+1)^2 = 584/6 = 97,33
n + 1 = √97,33 ~ 9,86 = 10
n = 9
Значит, нужно ограничиться покупкой 9 духовок.
За 6*9 = 54 дня мы их купим, и за 584/10 ~ 59 дней мы соберем нужное количество коробок на складе.
Всего мы истратим 54 + 59 = 113 дней.