Можно записать две похожих формулировки правила перевода из десятичной системы в двоичную:
Формулировка 1. Для перевода чисел из десятичной системы в двоичную нужно разделить число на 2, где 2 — основание двоичной системы, и записать остаток от деления. Полученное частное снова разделить на 2 и также записать остаток. Повторять действия, пока частное не станет равным 0. Записать все остатки в обратном порядке.
Пример 1: переведем число 36 в двоичную систему счисления:
Формулировка 2. Для перевода чисел из десятичной системы в двоичную нужно разделить число на 2, где 2 — основание двоичной системы, и записать остаток от деления. Полученное частное снова разделить на 2 и также записать остаток. Повторять действия, пока частное не станет равным 1. Записать последнее частное (1) и все остатки в обратном порядке.
Пример 2: переведем число 123 в двоичную систему счисления:
123 / 2 = 61в остатке 1 61 / 2 = 30в остатке 1 30 / 2 = 15в остатке 0 15 / 2 = 7в остатке 1 7 / 2 = 3в остатке 1 3 / 2 = 1в остатке 1 Последняя цифра — 1 И запишем эту последнюю 1 и остатки снизу вверх ↑
12310 = 11110112
|
Вторая формулировка напоминает нам, что первая цифра двоичного числа (кроме нуля, конечно) всегда равна единице и последнее действие можно не записывать, так как оно всегда одинаковое, в остальном она аналогична первой. Именно это правило используется в школе, только применяется запись в столбик, однако разделить число на 2 можно и без столбика : ), а запись получается более аккуратной, чем письмена наискось через всю страницу (к тому же её не сложно представить в электронном виде иначе как графикой) .
И в целом, первое правило более универсальное, оно подходит ко всем системам, выучите его и забудьте все прочие, чему бы там не учили в школе.
Последняя цифра двоичного числа будет нулем, если число четное и единицей, если число нечетное.
При делении целого числа нацело на 2 в остатке может быть либо 0 (если делимое четно) либо 1 (если делимое нечетно) .
При целочисленном делении меньшего числа на большее результатом будет всегда 0, а в остатке — делимое, т. е. исходное число, например: 1/2 = 0 а в остатке получим 1. Проверим 0*2+1=1 (получили 1, т. е. делимое) .
Проверить полученные значения можно с стандартного калькулятора в любой операционной системе. Системы счисления в калькуляторе обозначаются сокращенно: дес — десятичная, бин — двоичная, ост — восьмеричная, хекс — шестнадцатеричная.
Электронное устройство, осуществляющее подобный перевод, называется шифратором.
7)На координатной плоскости отмечены числа p,q и r.
Какая из разностей q-p, q-r, r-p отрицательная.
ответ: q-r такая из разниц будет отрицательная
8)
9)
х=±7
ответ :-7
10) Костя не выучил 4 билета всего 25 билетов
25-4=21
Вероятность что Кости попадется билет который он знает 21/25=0,84
13) 8х-3(х+9)≥-9
8х-3х-27≥-9
8х-3х≥-9+27
5х≥18
х≥18/15
х≥3,6
ответ: [3,6;∞) №1
14) 1 минута образуется осадок 0,2 грамма
а1=0,2 гр
а7= неизвестная переменная
d = 0,5 - на столько каждую минуту увеличивается масса осадка.
Формула n-ого члена арифметической прогрессии выглядит так:
аn = a1 + d(n - 1).
Подставляем данные величины:
а7 = 0,2 + 0,2(7 - 1) = 0,2 + 1,2= 1,4грамма
ответ: 1,4 грамма
Объяснение:
Формулировка 1. Для перевода чисел из десятичной системы в двоичную нужно разделить число на 2, где 2 — основание двоичной системы, и записать остаток от деления. Полученное частное снова разделить на 2 и также записать остаток. Повторять действия, пока частное не станет равным 0. Записать все остатки в обратном порядке.
Пример 1: переведем число 36 в двоичную систему счисления:
36 / 2 = 18в остатке 0
18 / 2 = 9в остатке 0
9 / 2 = 4в остатке 1
4 / 2 = 2в остатке 0
2 / 2 = 1в остатке 0
1 / 2 = 0в остатке 1
И запишем полученные остатки снизу вверх ↑
3610 = 1001002
Формулировка 2. Для перевода чисел из десятичной системы в двоичную нужно разделить число на 2, где 2 — основание двоичной системы, и записать остаток от деления. Полученное частное снова разделить на 2 и также записать остаток. Повторять действия, пока частное не станет равным 1. Записать последнее частное (1) и все остатки в обратном порядке.
Пример 2: переведем число 123 в двоичную систему счисления:
123 / 2 = 61в остатке 1
61 / 2 = 30в остатке 1
30 / 2 = 15в остатке 0
15 / 2 = 7в остатке 1
7 / 2 = 3в остатке 1
3 / 2 = 1в остатке 1
Последняя цифра — 1
И запишем эту последнюю 1 и остатки снизу вверх ↑
12310 = 11110112
|
Вторая формулировка напоминает нам, что первая цифра двоичного числа (кроме нуля, конечно) всегда равна единице и последнее действие можно не записывать, так как оно всегда одинаковое, в остальном она аналогична первой. Именно это правило используется в школе, только применяется запись в столбик, однако разделить число на 2 можно и без столбика : ), а запись получается более аккуратной, чем письмена наискось через всю страницу (к тому же её не сложно представить в электронном виде иначе как графикой) .
И в целом, первое правило более универсальное, оно подходит ко всем системам, выучите его и забудьте все прочие, чему бы там не учили в школе.
Последняя цифра двоичного числа будет нулем, если число четное и единицей, если число нечетное.
При делении целого числа нацело на 2 в остатке может быть либо 0 (если делимое четно) либо 1 (если делимое нечетно) .
При целочисленном делении меньшего числа на большее результатом будет всегда 0, а в остатке — делимое, т. е. исходное число, например: 1/2 = 0 а в остатке получим 1. Проверим 0*2+1=1 (получили 1, т. е. делимое) .
Проверить полученные значения можно с стандартного калькулятора в любой операционной системе. Системы счисления в калькуляторе обозначаются сокращенно: дес — десятичная, бин — двоичная, ост — восьмеричная, хекс — шестнадцатеричная.
Электронное устройство, осуществляющее подобный перевод, называется шифратором.