знайдіть відомості про інформаційні технології які вивчали в курсі інформатики 5-9 класів по сфери дії використання підготуйте на тему комп'ютерні презентації
Там целая история... проще на калькуляторе, а если так то приравнивая к десятичной системе счисления, выбором остатков.. . Вычитание двоичных чисел. Вычитать числа, будем также столбиком и общее правило тоже, что и для десятичных чисел, вычитание выполняется поразрядно и если в разряде не хватает единицы, то она занимается в старшем. Решим следующий пример: 1101 - 110 = 111
Первый разряд. 1 - 0 =1. Записываем 1.
Второй разряд 0 -1. Не хватает единицы. Занимаем её в старшем разряде. Единица из старшего разряда переходит в младший, как две единицы (потому что старший разряд представляется двойкой большей степени ) 2-1 =1. Записываем 1.
Третий разряд. Единицу этого разряда мы занимали, поэтому сейчас в разряде 0 и есть необходимость занять единицу старшего разряда. 2-1 =1. Записываем 1.
Проверим результат в десятичной системе
1101 - 110 = 13 - 6 = 7 (111) Верное равенство.
Еще один интересный выполнения вычитания связан с понятием дополнительного кода, который позволяет свести вычитание к сложению. Получается число в дополнительном коде исключительно просто, берём число, заменяем нули на единицы, единицы наоборот заменяем на нули и к младшему разряду добавляем единицу. Например, 10010, в дополнительном коде будет 011011.
Правило вычитания через дополнительный код утверждает, что вычитание можно заменить на сложение если вычитаемое заменить на число в дополнительном коде.
Пример: 34 - 22 = 12
Запишем этот пример в двоичном виде. 100010 - 10110 = 1100
Дополнительный код числа 10110 будет такой
01001 + 00001 = 01010. Тогда исходный пример можно заменить сложением так 100010 + 01010 = 101100 Далее необходимо отбросить одну единицу в старшем разряде. Если это сделать то, получим 001100. Отбросим незначащие нули и получим 1100, то есть пример решён правильно
A) a = 3
print(a**5)
#Здесь не нужно использовать модуль, так как в Пайтоне или Питоне есть функция возведение в степень
B) import math
a = 49
print(math.sqrt(a))
#Здесь добавляем библиотеку или модуль командой import, создаем переменную и с команды math.sqrt извлекаем кв. корень числа 49.
C) import math
a = 7.57
print("Ближайшее наименьшее: ", math.floor(a))
print("Ближайшее наибольшее: ", math.ceil(a))
#Здесь почти все также, как и во 2, но используем 2 команды округления, это math.ceil, до ближайшего и math.floor до наибольшешо числа
Объяснение:
надеюсь
Вычитание двоичных чисел. Вычитать числа, будем также столбиком и общее правило тоже, что и для десятичных чисел, вычитание выполняется поразрядно и если в разряде не хватает единицы, то она занимается в старшем. Решим следующий пример:
1101
-
110
=
111
Первый разряд. 1 - 0 =1. Записываем 1.
Второй разряд 0 -1. Не хватает единицы. Занимаем её в старшем разряде. Единица из старшего разряда переходит в младший, как две единицы (потому что старший разряд представляется двойкой большей степени ) 2-1 =1. Записываем 1.
Третий разряд. Единицу этого разряда мы занимали, поэтому сейчас в разряде 0 и есть необходимость занять единицу старшего разряда. 2-1 =1. Записываем 1.
Проверим результат в десятичной системе
1101 - 110 = 13 - 6 = 7 (111) Верное равенство.
Еще один интересный выполнения вычитания связан с понятием дополнительного кода, который позволяет свести вычитание к сложению. Получается число в дополнительном коде исключительно просто, берём число, заменяем нули на единицы, единицы наоборот заменяем на нули и к младшему разряду добавляем единицу. Например, 10010, в дополнительном коде будет 011011.
Правило вычитания через дополнительный код утверждает, что вычитание можно заменить на сложение если вычитаемое заменить на число в дополнительном коде.
Пример: 34 - 22 = 12
Запишем этот пример в двоичном виде. 100010 - 10110 = 1100
Дополнительный код числа 10110 будет такой
01001 + 00001 = 01010. Тогда исходный пример можно заменить сложением так 100010 + 01010 = 101100 Далее необходимо отбросить одну единицу в старшем разряде. Если это сделать то, получим 001100. Отбросим незначащие нули и получим 1100, то есть пример решён правильно