В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
526424244241242
526424244241242
16.10.2020 04:19 •  Химия

1.записать, к каким группам кислот принадлежит а) серная кислота; б) сероводородная кислота
2.Выписать, с какими из предложены веществ, будет реагировать соляная кислота: Ag, Mg, CuO, Cu(OH)2, NaNO3, AgNO3. Составить соответствующие уравнения реакций в молекулярном виде.​

Показать ответ
Ответ:
Sergey200320032003
Sergey200320032003
07.06.2022 01:33
1. реакции соединения при реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава: a + b + c = d как правило, эти реакции выделением тепла, т. е. приводят к образованию более устойчивых и менее богатых энергией соединений. реакции соединения простых веществ всегда носят окислительно-восстановительный характер. реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности: сасо3 + со2 + н2о = са (нсо3)2, так и относиться к числу окислительно-восстановительных: 2fесl2 + сl2 = 2fесl3. 2. реакции разложения реакции разложения приводят к образованию нескольких соединений из одного сложного вещества: а = в + с + d. продуктами разложения сложного вещества могут быть как простые, так и сложные вещества. из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот: to cuso4 5h2o=cuso4 + 5h2o to cu(oh)2=cuo + h2o to h2sio3=sio2 + h2o. к реакциям разложения окислительно-восстановительного характера относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления: to 2so3=2so2 + o2. to 4hno3=2h2o + 4no2o + o2o. 2agno3 = 2ag + 2no2 + o2, (nh4)2cr2o7 = cr2o3 + n2 + 4h2o. особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты. реакции разложения в органической носят название крекинга: с18h38 = с9h18 + с9h20, или дегидрирования c4h10 = c4h6 + 2h2. 3. реакции замещения при реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное: а + вс = ав + с. эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным: 2аl + fe2o3 = 2fе + аl2о3, zn + 2нсl = znсl2 + н2, 2квr + сl2 = 2ксl + вr2, 2ксlo3 + l2 = 2klo3 + сl2. примеры реакций замещения, не изменением валентных состояний атомов, крайне немногочисленны. следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды: сасо3+ sio2 = саsio3 + со2, са3(ро4)2 + зsio2 = зсаsio3 + р2о5, иногда эти реакции рассматривают как реакции обмена: сн4 + сl2 = сн3сl + нсl. 4. реакции обмена реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями: ав + сd = аd + св. если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. это наиболее распространенная группа реакций между сложными веществами - , основаниями, кислотами и солями: zno + н2sо4 = znsо4 + н2о, agnо3 + квr = аgвr + кnо3, сrсl3 + зnаон = сr(он) 3 + зnасl. частный случай этих реакций обмена - реакции нейтрализации: нсl + кон = ксl + н2о. обычно эти реакции подчиняются законам равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения: nансо3 + нсl = nасl + н2о + со2↑, са (нсо3)2 + са (он) 2 = 2сасо3↓ + 2н2о, сн3сооnа + н3ро4 = сн3соон + nан2ро4.
0,0(0 оценок)
Ответ:
Sawensia
Sawensia
14.05.2023 10:44

Газификация угля

Актуальность газификации угля

Уголь - самый насыщенный углеродом вид ископаемого топлива.

При сжигании угля на тепловых электростанциях (ТЭС) образуется в 2 раза больше СО2, чем в процессе сжигания природного газа.

В связи с декарбонизацией мировой экономики предполагается отказаться от использования угля в качестве энергоресурса из-за превышения допустимого уровня выбросов в атмосферу твердых углеродных частиц, окислов азота.

Газификации угля позволяет его использовать в переходный период декарбонизации и снижать выбросы в атмосферу.

Технология газификации угля

Реакция газификации угля является высокотемпературным процессом взаимодействия углерода из топлива с окислителями.

Этот процесс необходим для того, чтобы получить горючие газы (Н2, СО, СН4).

В зависимости от применяемого сырья и вида конверсии (водяным паром или нестехиометрическим количеством О2) соотношение компонентов в газовой смеси изменяется в широких пределах:

СН4 + Н2О : СО + 3Н2

СН4 + ½O2 : СО + 2Н2

-СН2-+ Н2О : СО + 2Н2

-СН2-+ ½O2 : СО + Н2

Окислители:

кислород (или обогащенный им воздух),

водяной пар,

диоксид углерода (СО2)

или комбинации перечисленных веществ.

Основные реакции при газификации угля - реакции неполного окисления углерода органической массы, гетерогенные превращения угля с образованием газообразных продуктов:

С + 1/2 O2 : СО,

С + СO2 : 2 СO2,

С + Н2О : СО + Н2

Первичные продукты газификации, например СО2, могут реагировать с углеродом угля.

Сопутствующие газификации угля продукты его термического разложения:

диоксид углерода,

вода,

водород,

продукты полукоксования (углеводороды), которые также могут взаимодействовать с раскаленным углеродом.

Скорость реакции газификации - соответствует техническим целям.

Температура - высокая, при которой образование высших углеводородов практически исключается.

Угольная сера - нежелательная примесь, переводится в сероводород и сероуглерод.

Состав и теплота сгорания полученного в результате газификации газа различны и зависят от его использования:

горючий газ (для технологического и энергетического сжигания) - наличие большего объема метана и отсутствие нежелательных продуктов полукоксования угля: масла, смолы, фенолы,

синтез-газ ( химсырье для производства метанола, аммиака, использование в процессе Фишера-Тропша для производства жидкого топлива) - определенное соотношения СО:Н2 и Н2*2, что достигается подбором условий техпроцесса и выбором состава газифицирующего агента( состав: кислород и водяной пар).

восстановительный газ (в металлургической промышленности) - для прямого восстановления железной руды и др..

Классификация газификации:

По состоянию топлива в газогенераторе:

газификация в неподвижном слое;

газификация в медленно опускающемся слое твердого топлива;

газификация в кипящем слое;

газификация в потоке пылевидного топлива.

На различии подвода тепла к реактору газификации - эндотермический процесс:

автотермический, необходимое для газификации тепло, получают путем сжигания части введенного топлива в присутствии кислородсодержащих газифицирующих агентов,

аллотермический, тепло подводится извне с твердого или газообразного теплоносителя.

По принципу организации потока. Мелкозернистый или пылевидный уголь газифицируют при подаче в одном направлении угля и газообразного газифицирующего агента.

Это техническое решение имеет ряд преимуществ по сравнению с процессами газификации в неподвижном слое:

- более низкую стоимость мелкозернистого топлива по сравнению с кусковым;

- возможность применения сырья любой степени газификации, прежде всего любой спекаемости;

- отсутствие побочных продуктов - смолы, масла, фенолов и др.

- если газификацию проводят при повышенном давлении, значение этих факторов еще более возрастает, так как производительность генератора увеличивается пропорционально давлению.

В настоящее время:

совершенствуются существующие технологии газификации под давлением,

разрабатываются принципиально новых технологических процессов под давлением,

разрабатываются технологии повышения реакционной температуры,

разрабатываются технологии без использования дорогостоящей кислородной установки.

Повышение давления:

позволяет увеличить производительность, что повышает концентрация газифицирующего агента.

влияет на равновесие в процессе газификации.

благоприятно отражается на габаритных размерах газогенератора и скрубберов,

дает экономию затрат на компрессию, так как производимый газ занимает больший объем, чем газифицирующий агент.

делает возможным применение физических очистки газа, которые неэффективны при атмосферном давлении, экономить стоимость чистящего агента, снижать его потребления .

Повышение реакционной температуры:

увеличивает производительность газификатора;

уменьшает удельный объем газификатора,

снижает выход смол или нежелательных углеводородов,

за счет смещения равновесия при высоких температурах выходит газ с более высоким восстановительным потенциалом вследствие низкого содержания СО2 и более глубокого разложения водяного пара.

0,0(0 оценок)
Популярные вопросы: Химия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота