Описати приготування 500 г розчину з масовою часткою натрій хлориду 12% з двох розчинів з масовими частками натрій хлориду відповідно 20% та 10%.Розрахувати молярну концентрацію,еквівалент,моляльність та титр розчину.
Ео (Zn(2+)/Zn) = − 0,76 В Eo(Al(3+)/Al) = – 1,700 B [Al(3+)] = 1 моль/л [Zn(2+)] = 1 моль/л В гальваническом элементе анодом становится металл, обладающего меньшим значением электродного потенциала, а катодом – металл с большим значением электродного потенциала. Поскольку цинк в электрохимическом ряду напряжений стоит правее, чем алюминий, то цинк имеет большее значение электродного потенциала восстановления, чем алюминий. Значит, в данном гальваническом элементе цинковый электрод будет катодом, а алюминиевый – анодом. На аноде протекает процесс окисления металла, а на катоде – процесс восстановления металла. Процессы окисления-восстановления на электродах. Анод (-) Al(0) – 3е → Al(3+) │2 - процесс окисления на аноде Катод (+) Zn(2+) + 2е → Zn(0) │3 - процесс восстановления на катоде Суммируя реакции на аноде и катоде, получаем уравнение, которое в ионной форме, выражает происходящую в элементе реакцию. 2Al + 3Zn(2+) → 3Zn + 2Al(3+) Схема гальванического элемента А (-) | Al | Al(3+) || Zn(2+) | Zn | K(+) Стандартная ЭДС гальванического элемента Е = Е (катода) – Е (анода) = Ео (Zn(2+)/Zn) – Eo(Al(3+)/Al) = − 0,76 – (– 1,70) = 0,94 В Стандартная ЭДС гальванического элемента соответствует одномолярным концентрациям ионов Al(3+) и Zn(2+), то есть когда [Al(3+)] = [Zn(2+)] = 1 моль/л Если концентрации ионов Al(3+) и Zn(2+) отличны от одномолярных, то электродные потенциалы анода и катода находятся по уравнению Нернста при 298 градусах Кельвина. Е (анода) = Е (Al(3+)/Al) = Ео (Al(3+)/Al) + (0,059/3)*lg[Al(3+)] Е (катода) = Е (Zn(2+)/Zn) = Ео (Zn(2+)/Zn) + (0,059/2)*lg[Zn(2+)
Алюминий (лат. Аluminium, химический символ Al, III группа периодической системы Менделеева, атомный номер 13, атомная масса 26,9815) — мягкий, легкий, серебристо-белый металл, быстро окисляющийся, удельная плотность 2,7 г/ см³, температура плавления 660 °C. По распространенности в земной коре алюминий занимает 3-е место после кислорода и кремния среди всех атомов и 1-е место — среди металлов. В природе представлен лишь одним стабильным нуклидом 27Al. Искусственно получен ряд радиоактивных изотопов алюминия, наиболее долгоживущий – 26Al имеет период полураспада 720 тысяч лет.
Алюминий - наиболее распространенный металл на земле, а по распространенности всех элементов в земной коре он занимает третье место. На его долю приходится 8% состава земной коры. Бокситная руда в настоящее время является главным сырьем для получения алюминия. Ежегодно в мире добывают от 80 до 90 млн. тонн бокситной руды. Почти 30% этого колличества добывают в Австралии и еще 15% на Ямайка. При нынешнем уровне мирового производства алюминия разведанных на земле запасов бокситов достаточно, чтобы обеспечивать потребности в алюминии еще несколько сотен лет.
Алюминий имеет наиболее разносторонние применения из всех металлов. Он широко используется в транспортном машиностроении, например для конструирования самолетов, судов, автомобилей. В химической промышленности алюминий используется в качестве восстановителя, в строительной промышленности - для изготовления оконных рам и дверей, а в пищевой промышленности - для изготовления упаковочных материалов. В быту он используется в качестве материала для кухонной посуды и в виде фольги для хранения пищевых продуктов.
атинское aluminium происходит от латинского же alumen, означающего квасцы (сульфат алюминия и калия KAl(SO4)2·12H2O), которые издавна использовались при выделке кож и как вяжущее средство. Из-за высокой химической активности открытие и выделение чистого алюминия растянулось почти на 100 лет. Вывод о том, что из квасцов может быть получена «земля» (тугоплавкое вещество, по-современному — оксид алюминия) сделал еще в 1754 немецкий химик А. Маргграф. Позднее оказалось, что такая же «земля» может быть выделена из глины, и ее стали называть глиноземом. Получить металлический алюминий смог только в 1825 датский физик Х. К. Эрстед. Он обработал амальгамой калия (сплавом калия со ртутью) хлорид алюминия AlCl3, который можно было получить из глинозема, и после отгонки ртути выделил серый порошок алюминия.
Только через четверть века этот удалось немного модернизировать. Французский химик А. Э. Сент-Клер Девиль в 1854 предложил использовать для получения алюминия металлический натрий, и получил первые слитки нового металла. Стоимость алюминия была тогда очень высока, и из него изготовляли ювелирные украшения.
Промышленный производства алюминия путем электролиза расплава сложных смесей, включающих оксид, фторид алюминия и другие вещества, независимо друг от друга разработали в 1886 году П. Эру (Франция) и Ч. Холл (США). Производство алюминия связано с высоким расходом электроэнергии, поэтому в больших масштабах оно было реализовано только в 20 веке. В Советском Союзе первый промышленный алюминий был получен 14 мая 1932 года на Волховском алюминиевом комбинате, построенном рядом с Волховской гидроэлектростанцией.
Eo(Al(3+)/Al) = – 1,700 B
[Al(3+)] = 1 моль/л
[Zn(2+)] = 1 моль/л
В гальваническом элементе анодом становится металл, обладающего меньшим значением электродного потенциала, а катодом – металл с большим значением электродного потенциала. Поскольку цинк в электрохимическом ряду напряжений стоит правее, чем алюминий, то цинк имеет большее значение электродного потенциала восстановления, чем алюминий. Значит, в данном гальваническом элементе цинковый электрод будет катодом, а алюминиевый – анодом.
На аноде протекает процесс окисления металла, а на катоде – процесс восстановления металла.
Процессы окисления-восстановления на электродах.
Анод (-) Al(0) – 3е → Al(3+) │2 - процесс окисления на аноде
Катод (+) Zn(2+) + 2е → Zn(0) │3 - процесс восстановления на катоде
Суммируя реакции на аноде и катоде, получаем уравнение, которое в ионной форме, выражает происходящую в элементе реакцию.
2Al + 3Zn(2+) → 3Zn + 2Al(3+)
Схема гальванического элемента
А (-) | Al | Al(3+) || Zn(2+) | Zn | K(+)
Стандартная ЭДС гальванического элемента
Е = Е (катода) – Е (анода) = Ео (Zn(2+)/Zn) – Eo(Al(3+)/Al) = − 0,76 – (– 1,70) = 0,94 В
Стандартная ЭДС гальванического элемента соответствует одномолярным концентрациям ионов Al(3+) и Zn(2+), то есть когда
[Al(3+)] = [Zn(2+)] = 1 моль/л
Если концентрации ионов Al(3+) и Zn(2+) отличны от одномолярных, то электродные потенциалы анода и катода находятся по уравнению Нернста при 298 градусах Кельвина.
Е (анода) = Е (Al(3+)/Al) = Ео (Al(3+)/Al) + (0,059/3)*lg[Al(3+)]
Е (катода) = Е (Zn(2+)/Zn) = Ео (Zn(2+)/Zn) + (0,059/2)*lg[Zn(2+)
Алюминий (лат. Аluminium, химический символ Al, III группа периодической системы Менделеева, атомный номер 13, атомная масса 26,9815) — мягкий, легкий, серебристо-белый металл, быстро окисляющийся, удельная плотность 2,7 г/ см³, температура плавления 660 °C. По распространенности в земной коре алюминий занимает 3-е место после кислорода и кремния среди всех атомов и 1-е место — среди металлов. В природе представлен лишь одним стабильным нуклидом 27Al. Искусственно получен ряд радиоактивных изотопов алюминия, наиболее долгоживущий – 26Al имеет период полураспада 720 тысяч лет.
Алюминий - наиболее распространенный металл на земле, а по распространенности всех элементов в земной коре он занимает третье место. На его долю приходится 8% состава земной коры. Бокситная руда в настоящее время является главным сырьем для получения алюминия. Ежегодно в мире добывают от 80 до 90 млн. тонн бокситной руды. Почти 30% этого колличества добывают в Австралии и еще 15% на Ямайка. При нынешнем уровне мирового производства алюминия разведанных на земле запасов бокситов достаточно, чтобы обеспечивать потребности в алюминии еще несколько сотен лет.
Алюминий имеет наиболее разносторонние применения из всех металлов. Он широко используется в транспортном машиностроении, например для конструирования самолетов, судов, автомобилей. В химической промышленности алюминий используется в качестве восстановителя, в строительной промышленности - для изготовления оконных рам и дверей, а в пищевой промышленности - для изготовления упаковочных материалов. В быту он используется в качестве материала для кухонной посуды и в виде фольги для хранения пищевых продуктов.
атинское aluminium происходит от латинского же alumen, означающего квасцы (сульфат алюминия и калия KAl(SO4)2·12H2O), которые издавна использовались при выделке кож и как вяжущее средство. Из-за высокой химической активности открытие и выделение чистого алюминия растянулось почти на 100 лет. Вывод о том, что из квасцов может быть получена «земля» (тугоплавкое вещество, по-современному — оксид алюминия) сделал еще в 1754 немецкий химик А. Маргграф. Позднее оказалось, что такая же «земля» может быть выделена из глины, и ее стали называть глиноземом. Получить металлический алюминий смог только в 1825 датский физик Х. К. Эрстед. Он обработал амальгамой калия (сплавом калия со ртутью) хлорид алюминия AlCl3, который можно было получить из глинозема, и после отгонки ртути выделил серый порошок алюминия.
Только через четверть века этот удалось немного модернизировать. Французский химик А. Э. Сент-Клер Девиль в 1854 предложил использовать для получения алюминия металлический натрий, и получил первые слитки нового металла. Стоимость алюминия была тогда очень высока, и из него изготовляли ювелирные украшения.
Промышленный производства алюминия путем электролиза расплава сложных смесей, включающих оксид, фторид алюминия и другие вещества, независимо друг от друга разработали в 1886 году П. Эру (Франция) и Ч. Холл (США). Производство алюминия связано с высоким расходом электроэнергии, поэтому в больших масштабах оно было реализовано только в 20 веке. В Советском Союзе первый промышленный алюминий был получен 14 мая 1932 года на Волховском алюминиевом комбинате, построенном рядом с Волховской гидроэлектростанцией.
Объяснение: