При взаимодействии цинка массой 13 г с раствором серной кислоты получили соль массой 29 г. Определите выход продукта реакции (%) от теоретически возможного
Реакции горения являются экзотемическими (протекают с выделением тепла).
Реакция является окислительно-восстановительной. Кислород является окислителем (O2(0)+4e=2O(2-)), углерод является восстановителем (С(-4)-8е=С(+4)).
Катализатор для данной реакции не требуется, реация не каталитическая (окисление в присутствии катализатора возможно, но будет сказано о каталитическом окислении, а не о сгорании).
Реакция протекает между газами, следовательно данная реакция гомогенна (однородна).
Углекислый газ и воду превратить в метан не представляется возможным, данная реакция необратима.
1)В алканах каждый атом углерода находится в состоянии sp3-гибридизации и образует четыре σ-связи C−C и C−H, углы между которыми 109,5° ; длина связи C−C в алканах равна 0,154 нм. Напомним, что атом углерода образует σ-связь при перекрывании гибридных орбиталей (sp3-, sp2- или sp-атомных орбиталей) с гибридными орбиталями другого атома углерода или любыми орбиталями атомов других элементов. Перекрывание осуществляется таким образом, что область максимальной электронной плотности сосредотачивается в пространстве на прямой, соединяющей ядра атомов. Такое перекрывание наиболее эффективно, σ-связи самые прочные.
2)В обычных условиях алканы химически инертны. Они устойчивы к действию многих реагентов: не взаимодействуют с концентрированными серной и азотной кислотами,
с концентрированными и расплавленными щелочами, не окисляются сильными окислителями, например перманганатом калия KMnO4.
Химическая устойчивость алканов объясняется высокой прочностью σ-связей C−C и C−H, а также их неполярностью. Неполярные
связи C−C и C−H в алканах не склонны к ионному разрыву, но расщепляться гомолитически под действием активных свободных радикалов. Поэтому для алканов характерны радикальные
реакции; в этих реакциях образуются соединения, где атомы водорода замещены на другие атомы или группы атомов. Следовательно,
алканы вступают в реакции, протекающие по механизму радикального замещения, обозначаемого символом SR (от англ. substitution
radicalic). По этому механизму легче всего замещаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода.
1. Галогенирование. При взаимодействии алканов с галогенами
(хлором и бромом) под действием УФ-излучения или высокой температуры образуется смесь продуктов от моно- до полигалогензамещенных алканов. Общая схема реакций радикального замещения показана на примере хлорирования метана:
Реакция образования хлорметана протекает по цепному механизму, который характеризуется образованием свободных радикалов и
включает несколько стадий.
Рост цепи. Радикал хлора отнимает у молекулы алкана атом водорода.
Далее образующийся алкильный радикал может отнимать атом
хлора у молекулы хлора:
Эти реакции (стадии) повторяются до тех пор, пока не произойдет
обрыв цепи по одной из реакций:
Хлорметан может подвергаться дальнейшему хлорированию с образованием смеси продуктов CH2Cl2, CHCl3, CCl4
2. Нитрование (реакция Коновалова). При действии разбавленной азотной кислоты на алканы при 140 °C и небольшом давлении протекает радикальная реакция Как отмечено выше, при радикальных реакциях (галогенирование, нитрование) в первую очередь замещаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода. Это объясняется тем, что легче всего происходит гомолитический разрыв связи третичного атома углерода с водородом (энергия связи 376 кДж/моль), затем — вторичного (390 кДж/моль) и только потом — первичного (415 кДж/моль).458 Глава 20
3. Изомеризация. Нормальные алканы при определенных условиях могут превращаться в алканы с разветвленной цепью.
4. Гомолитический разрыв связей C−C, который происходит при
крекинге, требует нагревания и присутствия катализаторов, благодаря этому из высших алканов образуются алкены и низшие алканы, из метана и этана — ацетилен.
Эти реакции имеют большое промышленное значение. Таким путем высококипящие фракции нефти (мазут) превращают в бензин,
керосин и другие ценные продукты
5. Окисление. При мягком окислении метана кислородом воздуха в присутствии различных катализаторов могут быть получены
Реакции горения являются экзотемическими (протекают с выделением тепла).
Реакция является окислительно-восстановительной. Кислород является окислителем (O2(0)+4e=2O(2-)), углерод является восстановителем (С(-4)-8е=С(+4)).
Катализатор для данной реакции не требуется, реация не каталитическая (окисление в присутствии катализатора возможно, но будет сказано о каталитическом окислении, а не о сгорании).
Реакция протекает между газами, следовательно данная реакция гомогенна (однородна).
Углекислый газ и воду превратить в метан не представляется возможным, данная реакция необратима.
Объяснение:
CH4+2O2=CO2+2H2O
1)В алканах каждый атом углерода находится в состоянии sp3-гибридизации и образует четыре σ-связи C−C и C−H, углы между которыми 109,5° ; длина связи C−C в алканах равна 0,154 нм. Напомним, что атом углерода образует σ-связь при перекрывании гибридных орбиталей (sp3-, sp2- или sp-атомных орбиталей) с гибридными орбиталями другого атома углерода или любыми орбиталями атомов других элементов. Перекрывание осуществляется таким образом, что область максимальной электронной плотности сосредотачивается в пространстве на прямой, соединяющей ядра атомов. Такое перекрывание наиболее эффективно, σ-связи самые прочные.
2)В обычных условиях алканы химически инертны. Они устойчивы к действию многих реагентов: не взаимодействуют с концентрированными серной и азотной кислотами,
с концентрированными и расплавленными щелочами, не окисляются сильными окислителями, например перманганатом калия KMnO4.
Химическая устойчивость алканов объясняется высокой прочностью σ-связей C−C и C−H, а также их неполярностью. Неполярные
связи C−C и C−H в алканах не склонны к ионному разрыву, но расщепляться гомолитически под действием активных свободных радикалов. Поэтому для алканов характерны радикальные
реакции; в этих реакциях образуются соединения, где атомы водорода замещены на другие атомы или группы атомов. Следовательно,
алканы вступают в реакции, протекающие по механизму радикального замещения, обозначаемого символом SR (от англ. substitution
radicalic). По этому механизму легче всего замещаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода.
1. Галогенирование. При взаимодействии алканов с галогенами
(хлором и бромом) под действием УФ-излучения или высокой температуры образуется смесь продуктов от моно- до полигалогензамещенных алканов. Общая схема реакций радикального замещения показана на примере хлорирования метана:
Реакция образования хлорметана протекает по цепному механизму, который характеризуется образованием свободных радикалов и
включает несколько стадий.
Рост цепи. Радикал хлора отнимает у молекулы алкана атом водорода.
Далее образующийся алкильный радикал может отнимать атом
хлора у молекулы хлора:
Эти реакции (стадии) повторяются до тех пор, пока не произойдет
обрыв цепи по одной из реакций:
Хлорметан может подвергаться дальнейшему хлорированию с образованием смеси продуктов CH2Cl2, CHCl3, CCl4
2. Нитрование (реакция Коновалова). При действии разбавленной азотной кислоты на алканы при 140 °C и небольшом давлении протекает радикальная реакция Как отмечено выше, при радикальных реакциях (галогенирование, нитрование) в первую очередь замещаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода. Это объясняется тем, что легче всего происходит гомолитический разрыв связи третичного атома углерода с водородом (энергия связи 376 кДж/моль), затем — вторичного (390 кДж/моль) и только потом — первичного (415 кДж/моль).458 Глава 20
3. Изомеризация. Нормальные алканы при определенных условиях могут превращаться в алканы с разветвленной цепью.
4. Гомолитический разрыв связей C−C, который происходит при
крекинге, требует нагревания и присутствия катализаторов, благодаря этому из высших алканов образуются алкены и низшие алканы, из метана и этана — ацетилен.
Эти реакции имеют большое промышленное значение. Таким путем высококипящие фракции нефти (мазут) превращают в бензин,
керосин и другие ценные продукты
5. Окисление. При мягком окислении метана кислородом воздуха в присутствии различных катализаторов могут быть получены
метиловый спирт, формальдегид, муравьиная кислота.
Мягкое каталитическое окисление бутана кислородом воздуха —
один из промышленных получения уксусной кислоты:
На воздухе алканы сгорают до CO2 и H2О.
Метан, этан, бутан и другие алканы служат сырьем в промышленных синтезах
Объяснение: