Гидроксид алюминия амфотерен. Т.е. проявляет как оснОвные свойства, так и кислотные. Т.е. реагирует с основаниями и кислотами в равной степени.
Что сделала Ира - взяла 2 соли. Гидроксид алюминия ведет с себя с солями как любое другое основание, и совсем не важно амфотерное оно или нет.
Что предложил Олег:
Al(OH)₃ + 3HCl → AlCl₃ + 3H₂O
Al(OH)₃ + 3H⁺ → Al³⁺ + 3H₂O
Данная реакция ПРОТЕКАЕТ. Гидроксид алюминия сам по себе осадок, а при добавлении кислоты он растворяется. Т.е. реагирует с кислотой, т.е. проявляет оснОвные свойства.
Что предложил Антон:
Al(OH)₃ + KOH → K[Al(OH)₄]
Происходит растворение осадка, т.е. протекает реакция. Таким образом гидроксид алюминия ведет себя как кислотное основание.
Таким образом Олег и Антон взяли нужные реактивы, но чтобы доказать амфотерность им нужно объединиться.
Гидроксид алюминия амфотерен. Т.е. проявляет как оснОвные свойства, так и кислотные. Т.е. реагирует с основаниями и кислотами в равной степени.
Что сделала Ира - взяла 2 соли. Гидроксид алюминия ведет с себя с солями как любое другое основание, и совсем не важно амфотерное оно или нет.
Что предложил Олег:
Al(OH)₃ + 3HCl → AlCl₃ + 3H₂O
Al(OH)₃ + 3H⁺ → Al³⁺ + 3H₂O
Данная реакция ПРОТЕКАЕТ. Гидроксид алюминия сам по себе осадок, а при добавлении кислоты он растворяется. Т.е. реагирует с кислотой, т.е. проявляет оснОвные свойства.
Что предложил Антон:
Al(OH)₃ + KOH → K[Al(OH)₄]
Происходит растворение осадка, т.е. протекает реакция. Таким образом гидроксид алюминия ведет себя как кислотное основание.
Таким образом Олег и Антон взяли нужные реактивы, но чтобы доказать амфотерность им нужно объединиться.
Устройства, в которых энергия окислительно-восстановительных
реакций превращается в электрическую, называются гальваническими
элементами.
Всякий гальванический элемент состоит из двух электродов – металлов,
погруженных в растворы электролитов; последние сообщаются друг с
другом обычно через пористую перегородку. Электрод, на котором
происходит процесс окисления, называется анодом; электрод, на котором
осуществляется восстановление – катодом.
Схематически гальванический элемент, в основе работы которого
лежит реакция
Zn + CuSO4 = ZnSO4 + Cu,
изображается следующим образом:
Zn | ZnSO4 || CuSO4 | Cu ,
или в ионном виде:
Zn | Zn+2 || Cu+2 | Cu .
На электродах протекают следующие процессы:
анодный: Zn – 2е = Zn+2;
катодный: Cu+2 + 2е = Cu;
токообразующая реакция: Zn + CuSO4 = ZnSO4 + Cu.
ЭДС (Е) элемента равна разности равновесных потенциалов
положительного (Ек) и отрицательного (Еа) электродов:
Е = Ек - Еа.
Пример 1. Определите возможность протекания реакции в
гальваническом элементе
Fe + Cd2+ = Fe 2+ + Cd.
Используйте стандартные потенциалы и значение ΔG0298.
Решение. Составим гальванический элемент, отвечающий этой
реакции:
(–) Fe | Fe 2+ || Cd2+ | Cd (+);
анодная реакция: Fe – 2е = Fe 2+;
катодная реакция: Cd2+ + 2е = Cd.
Пользуясь табл. 8, определим ЭДС гальванического элемента:
Е = Ек – Еа = –0,40 – ( –0,44) = 0,04 В.
Изменение величины энергии Гиббса связано с величиной ЭДС элемента
соотношением ΔG0298 = -nFЕ,