25-Окт-2012 | комментариев 9 | Лолита Окольнова Окислительно-восстановительные реакции (овр) — это химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующихся путём перераспределения электронов между атомом-окислителем и атомом-восстановителем. Схема окислительно восстановительной реакции
Любое взаимодействие атомов — это отдача — принятие электронов.
Когда нам дано какое-то уравнение реакции и нужно его уравнять, т.е.
определить степени окисления элементов, участвующих в процессе овр.
Степень окисления — это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна. Степень окисления — формальное понятие; в ряде случаев степень окисления не совпадает с валентностью. Алгоритм определения степени окисления (с.о.):
некоторые элементы имеют степень окисления, которую принимаем за константу: у водорода H с.о. = +1 (кроме гидридов: LiH — c.о.(Li) = +1, с.о.(H)=-1); у кислорода O с.о. = -2 (кроме фторида кислорода: OF схема окислительно-восстановительной реакции
у всех металлов главных групп периодической системы с I по III группы степень окисления всегда +1, у элементов II группы — +2, III — +3 в сложных веществах (больше 2-х элементов) с.о. элемента определяется по другим элементам, но при обязательном условии:
в целом молекула электронейтральна 0, т.е. в сумме все с.о. должны дать 0: схема окислительно-восстановительной реакции Такие задания есть даже в ЕГЭ — даны примеры веществ и нужно определить где, например, степень окисления элемента максимальна. Очень рекомендую определять ее не в уме, а по такому нехитрому уравнению — тогда точно не будет ошибки. схема окислительно-восстановительной реакции
Теперь определяем — какие элементы буду участниками овр — смотрим изменения степеней окисления: схема окислительно-восстановительной реакции Итак, степень окисления поменяли:
углерод — с 0 до +4 — окислился; сера — с +6 → +4 — восстановилась.
1 эквивалент Са (ОН) 2 составляет 0,5 моля. Следовательно, если по реакции СаО (к) + Н2О (ж) = Са (ОН) 2(к) получится 1 моль гидроксида, то выделится в два раза больше тепла, чем при получении одного эквивалента, т. е. 65,26 кДж.
В дальнейшем, чтобы не усложнять записи, не будем указывать агрегатное состояние веществ, стандартные теплоты образования будем обозначать ΔНº(…) с указанием в скобках вещества. Стандартные теплоты образования СаО и Н2О возьмем из книги «Краткий справочник физико-химических величин», 8-е издание (в вашем справочнике они могут немного отличаться по величине). Тепловой эффект данной в условии задачи реакции ΔН.
Термохимическое уравнение данной (в условии задачи) реакции:
1) СаО + Н2О = Са (ОН) 2 ; ΔН = -65,26 кДж/моль
Термохимическое уравнение реакции образования одного моля Са (ОН) 2 из простых веществ:
2) Са + О2 + Н2 = Са (ОН) 2; ΔНº(Са (ОН) 2) = ? (То, что надо найти)
Термохимическое уравнение реакции образования одного моля СаО из простых веществ:
3) Са + ½ О2 = СаО; ΔНº(СаО) = -635,09 кДж/моль
Термохимическое уравнение реакции образования одного моля жидкой Н2О из простых веществ:
4) Н2 + ½ О2 = Н2О; ΔНº(Н2О) = -285,83 кДж/моль
Если сложить уравнения 1,3 и 4 (почленно левые и правые части, а также тепловые эффекты), то получится уравнение 2.
Следовательно, теплота образования гидроксида кальция :
ΔНº(Са (ОН) 2) = -65,26+(- 635,09) +(- 285,83) = -986,18 (кДж/моль)
Можно убедиться, что рассчитанная таким образом величина стандартной теплоты образования гидроксида кальция близка к справочной величине. Последняя в моем справочнике равна 985,12 кДж/моль.
25-Окт-2012 | комментариев 9 | Лолита Окольнова
Окислительно-восстановительные реакции (овр) — это химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующихся путём перераспределения электронов между атомом-окислителем и атомом-восстановителем.
Схема окислительно восстановительной реакции
Любое взаимодействие атомов — это отдача — принятие электронов.
Когда нам дано какое-то уравнение реакции и нужно его уравнять, т.е.
написать схему окислительно восстановительной реакции,
нужно сначала:
Схема окислительно восстановительной реакции
определить степени окисления элементов, участвующих в процессе овр.
Степень окисления — это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна.
Степень окисления — формальное понятие; в ряде случаев степень окисления не совпадает с валентностью.
Алгоритм определения степени окисления (с.о.):
некоторые элементы имеют степень окисления, которую принимаем за константу:
у водорода H с.о. = +1 (кроме гидридов: LiH — c.о.(Li) = +1, с.о.(H)=-1);
у кислорода O с.о. = -2 (кроме фторида кислорода: OF
схема окислительно-восстановительной реакции
у всех металлов главных групп периодической системы с I по III группы степень окисления всегда +1, у элементов II группы — +2, III — +3
в сложных веществах (больше 2-х элементов) с.о. элемента определяется по другим элементам, но при обязательном условии:
в целом молекула электронейтральна 0, т.е. в сумме все с.о. должны дать 0:
схема окислительно-восстановительной реакции
Такие задания есть даже в ЕГЭ — даны примеры веществ и нужно определить где, например, степень окисления элемента максимальна. Очень рекомендую определять ее не в уме, а по такому нехитрому уравнению — тогда точно не будет ошибки.
схема окислительно-восстановительной реакции
Теперь определяем — какие элементы буду участниками овр — смотрим изменения степеней окисления:
схема окислительно-восстановительной реакции
Итак, степень окисления поменяли:
углерод — с 0 до +4 — окислился;
сера — с +6 → +4 — восстановилась.
Схема окислительно восстановительной реакции
Составляем саму схему окислительно восстановительной реакции:
С0 -4e— → C+4 — окисление, углерод — восстановитель;
Повышение заряда — окисление, сам элемент при этом будет восстановителем.
Понижение — восстановление, элемент — окислитель
S+6 +2e— → S+4 — восстановление, сера — окислитель
В любой реакции
количество отданных электронов должно быть равно количеству принятых:
1• | С0 -4e— → C+4
2• | S+6 +2e— → S+4
Складываем оба уравнения — реагенты с реагентами, продукты — с продуктами, с учетом коэффициентов и получаем:
С + 2H2SO4= CO2 + 2SO2 + 2H2O
В дальнейшем, чтобы не усложнять записи, не будем указывать агрегатное состояние веществ, стандартные теплоты образования будем обозначать ΔНº(…) с указанием в скобках вещества. Стандартные теплоты образования СаО и Н2О возьмем из книги «Краткий справочник физико-химических величин», 8-е издание (в вашем справочнике они могут немного отличаться по величине). Тепловой эффект данной в условии задачи реакции ΔН.
Термохимическое уравнение данной (в условии задачи) реакции:
1) СаО + Н2О = Са (ОН) 2 ; ΔН = -65,26 кДж/моль
Термохимическое уравнение реакции образования одного моля Са (ОН) 2 из простых веществ:
2) Са + О2 + Н2 = Са (ОН) 2; ΔНº(Са (ОН) 2) = ? (То, что надо найти)
Термохимическое уравнение реакции образования одного моля СаО из простых веществ:
3) Са + ½ О2 = СаО; ΔНº(СаО) = -635,09 кДж/моль
Термохимическое уравнение реакции образования одного моля жидкой Н2О из простых веществ:
4) Н2 + ½ О2 = Н2О; ΔНº(Н2О) = -285,83 кДж/моль
Если сложить уравнения 1,3 и 4 (почленно левые и правые части, а также тепловые эффекты), то получится уравнение 2.
Следовательно, теплота образования гидроксида кальция :
ΔНº(Са (ОН) 2) = -65,26+(- 635,09) +(- 285,83) = -986,18 (кДж/моль)
Можно убедиться, что рассчитанная таким образом величина стандартной теплоты образования гидроксида кальция близка к справочной величине. Последняя в моем справочнике равна 985,12 кДж/моль.