В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Ученик705
Ученик705
08.06.2022 07:57 •  Химия

Вычисли массу 2,45 моль карбоната натрия (ответ запиши с точностью до сотых).

Показать ответ
Ответ:
Фахрияlove1
Фахрияlove1
18.02.2023 23:17

гы Окислительно-восстановительные реакции часто довольно громоздки и, тем не менее, их нужно уметь уравнивать. Для этой цели используют предельно простую модель молекулы. Прежде всего вводят понятие о степени окисления атома в молекуле. Начнем с конкретных примеров. Степень окисления атомов в молекулах простых веществ (H2, F2, O2, O3, графит, алмаз, металлы) принимается равной нулю. Атомы щелочных металлов во всех соединениях с неметаллами имеют степень окисления равную +1 (если вспомнить о ионном характере связи в этих молекулах, то это действительно так). Атомы фтора (самого активного из всех неметаллов) во всех соединениях имеют степень окисления равную -1. В соединениях с металлами, где имеется ионный тип связи, это действительно так. Но выше мы уже видели, что в молекуле HF электронная пара, образующая химическую связь, лишь немного смещена к атому фтора и у него (исходя из величины дипольного момента) появляется заряд равной -0.4. При введении понятия "степень окисления" постулируется, что все ковалентные полярные связи становятся ионными. И только после этого нужно вычислиь тот заряд, который был бы у данного атома, а величину этого заряда в целых единицах принимают за степень окисления.


Атомы кислорода во всех соединениях (кроме O2, O3, H2O2 и ее производных, F2O) имеют степень окисления равную -2.


 


Дальше начинается элементарный подсчет. Любая молекула в целом электронейтральна: сумманое число положительных степеней окисления в молекуле равно суммарному числу отрицательных степеней окисления. Рассмотрим оксиды азота:




Так как степень окисления атомов кислорода равна -2, то степень окисления атомов азота можно легко подсчитать (они приведены под формулами оксидов).


Водород в соединениях с металлами (в молекулах гидридов металлов) имеет степень окисления равную -1. Водород в соединениях с неметаллами (как самый слабый из неметаллов) имеет степень окисления равную +1.


Итак, степень окисления атома в молекуле равна тому заряду, который был бы на данном атоме, если бы все ковалентные полярные связи стали ионными.


 


В качестве примера уравнивания окислительно- восстановительной реакции рассмотрим реакцию горения угля:


C + O2 = CO2,


Подытожим все сказанное.


Химические реакции, в которых атомы одного или нескольких элементов изменяют свою степень окисления, называются окислительно- восстановительными.


Окислители - это вещества, которые в результате химической реакции присоединяют к себе электроны (в разобранной реакции это и кислород, и молекулы кислорода, и атомы кислорода - можно использовать любое название).


Восстановители - это вещества, которые в результате химической реакции отдают электроны (в разобранной реакции это углерод или атом углерода).


Восстановители в результате окислительно-восстановительной реакции окисляются (у атомов восстановителя отбираются электроны).


Окислители в результате окислительно-восстановительной реакции восстанавливаются (атомы окислителя присоединяют к себе электроны).


В сульфате меди степень окисления атома меди равна +2 (Cu+2), атома кислорода -2 (О-2). При электролитической диссоциации в растворе появляются реальные ионы:


CuSO4 = Cu2+ + SO42-.


Чтобы подчеркнуть, что это реальные ионы, числа пишут перед знаком заряда (а в степенях окисления атомов - наоборот).


Кроме метода электронного баланса при уравнивании окислительно- восстановительных реакций часто используется метод электронно- ионного баланса. Он иногда имеет определенные преимущества.

0,0(0 оценок)
Ответ:
anna3371
anna3371
24.07.2020 03:19

Открытие благородных газов и изучение их свойств представляют собой очень интересную историю, хотя и вызвавшую некоторые потрясения у ученых-химиков. Этот период в истории химии даже называли полушутливо «кошмаром благородных газов».

Первый благородный газ, аргон, был открыт в 1894 году. В это время возник горячий научный спор между двумя британскими учеными - лордом Рэлеем и Вильямом Рамзаем. Релею пришло в голову, что азот, полученный из воздуха после удаления кислорода, имел плотность несколько большую, чем азот, полученный химическим путем. Рамзай придерживался той точки зрения, что такую аномалию в плотности можно объяснить присутствием в воздухе неизвестного тяжелого газа. Его коллега, напротив, не хотел согласиться с этим. Релей считал, что это, скорее, какая-то тяжелая озоноподобная модификация азота.

Внести ясность мог только эксперимент. Рамзай удалил из воздуха кислород обычным использовав его для сжигания, и связал азот, как он это обычно делал в своих лекционных опытах, пропуская его над раскаленным магнием. Применив оставшийся газ для дальнейших спектральных исследований, изумленный ученый увидел невиданный раньше спектр с красными и зелеными линиями.

Все лето 1894 года лорд Релей и Рамзай вели оживленную переписку и 18 августа сообщили об открытии новой составной части атмосферы – аргона. Рамзай продолжил свои опыты и выяснил, что аргон еще более инертен, чем азот, и, очевидно, вообще не реагирует с каким-либо другим химическим веществом. Именно за это свойство он получил свое название: «аргон» – от греческого «инертный».

Рамзай определил атомную массу аргона: 40. Следовательно, его надо было бы поместить между калием и кальцием. Однако там не было свободного места! Чтобы разрешить это противоречие, высказывались различные гипотезы. В частности, Д.И. Менделеев предположил, что аргон – аллотропическая модификация азота N3, молекула которой предположительно обладала очень высокой устойчивостью.

Рамзай вспомнил о сообщении доктора Гиллебранда из Института геологии в Вашингтоне. В 1890 году американский ученый обратил внимание на то, что при разложении минерала клевеита кислотами выделяются значительные количества газа, который он считал азотом. Теперь Рамзай хотел проверить - быть может, в этом азоте, связанном в минерале, можно было бы обнаружить аргон!

Он разложил две унции редкой породы серной кислотой. В марте 1895 он изучил спектр собранного газа и был необычайно поражен, когда обнаружил сверкающую желтую линию, отличающуюся от известной желтой спектральной линии натрия.

Это был новый газ, не известный до той поры газообразный элемент. Уильям Крукс, который в Англии считался первейшим авторитетом в области спектрального анализа, сообщил своему коллеге, что пресловутая желтая линия - та же, что была замечена Локьером и Жансеном в 1868 году в спектре Солнца: следовательно, гелий есть и на Земле.

Рамзай нашел как разместить оба вновь открытых газа в периодической системе, хотя формально места для них не было. К известным восьми группам элементов он добавил нулевую группу, специально для нульвалентных, нереакционно благородных газов, как теперь стали называть новые газообразные элементы.

Когда Рамзай разместил благородные газы в нулевой группе по их атомной массе - гелий 4, аргон 40, то обнаружил, что между ними есть место еще для одного элемента. Рамзай сообщил об этом осенью 1897 года в Торонто на заседании Британского общества. После многих неудачных опытов Рамзаю пришла в голову мысль искать их в воздухе. Тем временем немец Линде и англичанин Хемпсон практически одновременно опубликовали новый сжижения воздуха. Этим методом и воспользовался Рамзай и, действительно, с его смог обнаружить в определенных фракциях сжиженного воздуха недостающие газы: криптон («затаившийся»), ксенон («чужой») и неон («новый»).

Объяснение:

пробач шо таке велике .

0,0(0 оценок)
Популярные вопросы: Химия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота