Симметричное строение макромолекул, тождественное со строением полиэтилена, обусловливает его кристаллическое строение. [1]
Вследствие симметричного строения макромолекул и малого размера атома фтора политетрафторэтилен имеет упорядоченную структуру. Кристаллическая и аморфная фазы обусловливают, с одной стороны, высокую температуру плавления, достаточную твердость, а с другой - хорошую гибкость и очень низкую температуру хрупкости. [2]
Вследствие симметричного строения макромолекул и малого размера атома фтора политетрафторэтилен имеет упорядоченную структуру. При нагревании до 327 С кристаллическая фаза расплавляется, и полимер переходит в аморфное состояние. [3]
Вследствие симметричного строения макромолекул политетрафторэтилена и малого размера атома фтора, большая часть их правильно ориентирована и образует упорядоченную структуру. Сочетание большого процента кристаллической части с наличием неупорядоченной аморфной фазы обусловливает с одной стороны высокую температуру плавления, достаточную твердость, а с другой - хорошую гибкость и чрезвычайно низкую температуру хрупкости. [4]
Вследствие симметричного строения макромолекул политетрафторэтилена и малого размера атома фтора большая часть их правильно ориентирована и образует упорядоченную структуру. Большой процент кристаллической части и неупорядоченная аморфная фаза обусловливают, с одной стороны, высокую температуру плавления, достаточную твердость, а с другой - хорошую гибкость и чрезвычайно низкую температуру хрупкости. [5]
Очень большое значение симметричного строения макромолекул для полимеров к образованию волокон видно на примере полиэтилена: несмотря на низкую молекулярную когезию, при достаточно высоком молекулярном весе полиэтилен образует волокна и кристаллизуется; при устранении возможности кристаллизации полиэтилен является термопластичной пластмассой. [6]
Свойства полиэфиров фумаровой, янтарной и малеиаовой кислот.
Как температура плавления, так и, в особенности к кристаллизации и к пленко - и волокнообразованию зависят от линейного расположения и симметричного строения макромолекул полимеров. [7]
Фторопласты представляют собой полимеры галоидозамещенных этилена. Политетрафторэтилен является насыщенным неполярным веществом. Симметричное строение макромолекул его основные свойства. [8]
Положение группы СН3 может быть различным, в зависимости от полимеризации. Он изготавливается на базе метода низкого давления ( метод Циглера-Натта) в присутствии специальных систем катализаторов. Вследствие симметричного строения макромолекул имеет место более высокая степень кристалличности, чем у атактического и синдио-тактического. Этим обусловлены высокая формоустойчивость ( около 100 С), высокий предел прочности при растяжении, жесткость и твердость. По химической стойкости ПП сравним с ПЭ. Полипропилен не склеивается; горит светящимся пламенем. [9]
Симметричное строение макромолекул, тождественное со строением полиэтилена, обусловливает его кристаллическое строение. [1]
Вследствие симметричного строения макромолекул и малого размера атома фтора политетрафторэтилен имеет упорядоченную структуру. Кристаллическая и аморфная фазы обусловливают, с одной стороны, высокую температуру плавления, достаточную твердость, а с другой - хорошую гибкость и очень низкую температуру хрупкости. [2]
Вследствие симметричного строения макромолекул и малого размера атома фтора политетрафторэтилен имеет упорядоченную структуру. При нагревании до 327 С кристаллическая фаза расплавляется, и полимер переходит в аморфное состояние. [3]
Вследствие симметричного строения макромолекул политетрафторэтилена и малого размера атома фтора, большая часть их правильно ориентирована и образует упорядоченную структуру. Сочетание большого процента кристаллической части с наличием неупорядоченной аморфной фазы обусловливает с одной стороны высокую температуру плавления, достаточную твердость, а с другой - хорошую гибкость и чрезвычайно низкую температуру хрупкости. [4]
Вследствие симметричного строения макромолекул политетрафторэтилена и малого размера атома фтора большая часть их правильно ориентирована и образует упорядоченную структуру. Большой процент кристаллической части и неупорядоченная аморфная фаза обусловливают, с одной стороны, высокую температуру плавления, достаточную твердость, а с другой - хорошую гибкость и чрезвычайно низкую температуру хрупкости. [5]
Очень большое значение симметричного строения макромолекул для полимеров к образованию волокон видно на примере полиэтилена: несмотря на низкую молекулярную когезию, при достаточно высоком молекулярном весе полиэтилен образует волокна и кристаллизуется; при устранении возможности кристаллизации полиэтилен является термопластичной пластмассой. [6]
Свойства полиэфиров фумаровой, янтарной и малеиаовой кислот.Как температура плавления, так и, в особенности к кристаллизации и к пленко - и волокнообразованию зависят от линейного расположения и симметричного строения макромолекул полимеров. [7]
Фторопласты представляют собой полимеры галоидозамещенных этилена. Политетрафторэтилен является насыщенным неполярным веществом. Симметричное строение макромолекул его основные свойства. [8]
Положение группы СН3 может быть различным, в зависимости от полимеризации. Он изготавливается на базе метода низкого давления ( метод Циглера-Натта) в присутствии специальных систем катализаторов. Вследствие симметричного строения макромолекул имеет место более высокая степень кристалличности, чем у атактического и синдио-тактического. Этим обусловлены высокая формоустойчивость ( около 100 С), высокий предел прочности при растяжении, жесткость и твердость. По химической стойкости ПП сравним с ПЭ. Полипропилен не склеивается; горит светящимся пламенем. [9]
Mr(УВ) = D(H2) x Mr(H2) = 8 x 2 = 16
Вычисляем количество вещества углекислого газа:
n(CO2) = m/M = 8,8г/44г/моль = 0,2моль
Количество вещества углерода определяем по количеству вещества углекислого газа:
n(C) = n(CO2) = 0,2моль
Вычисляем массу углерода:
m(C) = n x M = 0,2моль х 12г/моль = 2,4г
Находим массу водорода:
m(H) = m(УВ) - m(C) = 3,2г - 2,4г = 0,8г
Находим соотношение атомов С и Н по формуле:
n = m/Ar
n(C) = 2,4/12 = 0,2
n(H) = 0,8/1 = 0,8
n(C) : n(H) = 0,2 : 0,8 = 2 : 8 = 1 : 4
Формула - СН4 - метан
Проверка: Mr(CH4) = 12 + 4 x 1 = 16