1. для вычисления значений следующих выражений воспользуйся правилом умножения числа на сумму.5 • (6 + 2)= 6 • (5 + 4)=8 • (4 + 8)= 4 • (8 + 8)=2. вычисли значение каждого из данных произведений, записав вычисления столбиком.406 • 9= 52 • 40=702 • 7= 84 • 30=3. реши . вычисли и запиши ответ.на склад 24 мотка проволоки по 10 м каждый и 63 мотка по 20 м. сколько всего метров проволоки на склад? 4. реши . вычисли и запиши ответ.на машину погрузили 27 ящиков яблок по 10 кг в каждом и 53 ящика яблок по 20 кг. сколько всего килограммов погрузили на машину?
Далее, для описания манипуляций с видами будем использовать термины:
RT (правый единичный поворот на 90 градусов по часовой стрелке) ,
LT (левый единичный поворот на 90 градусов против часовой стрелки) ,
UT (разворот на 180 градусов)
Наша начальная цель: собрать из пяти видов верхнюю часть куба, т.е. его грани, стоящие над столом. Будем считать, что мы смотрим на стол с кубом сверху. Верхнюю часть куба, состоящую из пяти видов, будем собирать в виде крестовой раскладки.
В центре креста раскладки будет верхняя грань, которая смотрит на нас, когда мы смотрим вниз на стол с кубом. Дальняя от нас (сверху экрана, если смотреть на ноутбук) часть креста раскладки: это задняя сторона куба. Ближняя к нам (снизу экрана, если смотреть на ноутбук) часть креста раскладки: это передняя сторона куба. Левая часть креста раскладки – это левая сторона куба и правая часть раскладки – соответственно правая сторона.
Важно понимать, что на стыках видов (на рёбрах) при составлении раскладки должны совпадать цветные квадратики на краях видов: чёрный к чёрному и белый к белому, поскольку рёбра куба одновременно являются и рёбрами маленьких кубиков, каждый из которых обладает однотонным окрасом со всех сторон.
Перебор возможных вариантов удобно делать на черновике с карандашом и бумагой, либо с ручкой, но тогда нужно зачёркивать неудачные варианты.
Перебор должен быть системным, иначе мы пропустим тот или иной вариант, и можем пропустить и нужный нам вариант. В качестве системы можно предложить, например, такой график просмотра вариантов.
1. Выбираем вид для верхней грани куба, т.е. для центра креста раскладки (сначала первый, потом второй и т.д.)
2. Когда выбран какой-то вид для верхней (центральной) грани, пытаемся подмонтировать в качестве задней грани к нему другие виды. Опять же по порядку видов.
3. Когда выбран какой-то вид для верхней (центральной) и задней граней, пытаемся подмонтировать в качестве правой грани к нему другие виды. Опять же по порядку видов.
4. Когда выбран какой-то вид для верхней (центральной), задней и правой граней, пытаемся подмонтировать в качестве передней грани к нему другие виды. Опять же по порядку видов.
5. Когда выбран какой-то вид для верхней (центральной), задней, правой и передней граней, пытаемся подмонтировать в качестве левой грани к нему оставшийся вид.
При этом нужно следить, чтобы совпадали рёбра не только верхней (центральной) грани с боковыми, но и рёбра между боковыми гранями.
Перед перебором нужно отметить, что грани 3-его и 5-ого видов – несовместимы. Как их не крути, их рёбра никогда не совместятся. Значит, ни один из этих видов не может служить верхней гранью куба, поскольку иначе он бы взаимодействовал по ребру с несовместным видом. Кроме того, эти несовместные виды не могут быть рядом и на соседних боковых гранях. Таким образом, мы понимаем, что при переборе 3-ий и 5-ый виды можно размещать только на противоположных гранях.
Последовательный перебор из, примерно десятка неудачных – приводит к единственному хорошему варианту:
В центре креста раскладки: 2-ой вид.
Слева: 3-ий вид.
Справа: 5ый вид RT.
Сзади: 1-ый вид.
Впереди: 4-ый вид UT.
Эта раскладка показана на первом рисунке. Обратите внимание, что по раскраске совмещены не только рёбра на стыке видов центральных и боковых граней, но и рёбра на стыке соседних боковых граней.
Теперь очень аккуратно в строгом соответствии с буквами-метками (они должны совместиться) переворачиваем раскладку, так чтобы получилась нижняя грань. Это показано на втором рисунке и там уже проявляется по совмещениям на рёбрах вид нижней грани.
Если взглянуть на предлагаемые варианты, то мы можем легко убедиться, что подходит и вариант (А) и вариант (Д) при повороте их на LT.
Выбрать нужный вариант – можно только сосчитав количество белых (их должно быть 12) и чёрных кубиков (их должно быть 15).
Смотрим на первую раскладку. На верхней грани – 3 белых. В среднем видимом слое, в том, что зажат между верхней и нижней гранью (состоящем из 8 кубиков) – 4 белых. В нижней грани (что можно увидеть на второй картинке) – как минимум 3 кубика.
Всего в видимой и известной части кубика мы насчитали 10 белых кубиков. А должно их быть 12. Значит, один белый кубик находится в центре куба (он невидим) и ещё один белый кубик мы можем разместить в положение, отмеченное на втором рисунке знаком вопроса.
А значит, окончательно, нам подходит вариант (Д)
О т в е т :
ответ:М (1).
Пошаговое объяснение:
Найдём расстояние между точками А и В на координатной прямой.
Расстояние АО от точки А до нулевой координаты составит 1,5 единицы, расстояние ОВ от нулевой координаты до точки В - 6 единиц.
Длина отрезка АВ = АО + ОВ = 1,5 + 6 = 7,5 единиц.
АМ : МВ = 1 : 2 - то есть, расстояние от точки А до точки М вдвое меньше расстояния от точки М до точки В.
2 * АМ = ВМ, поэтому правомерно равенство АМ + 2 * АМ = АВ.
В численном выражении 3 * АМ = 7,5, тогда АМ = 2,5 единицы.
Определим координату точки М.
Расстояние от начала координат до точки М равно
ОМ = 2,5 - АО = 2,5 - 1,5 = 1.