1. Начертить координатную прямую, приняв за единичный отрезок три клетки тетради. Отметить на координатной прямой точки: -4;-3,5; -2; -1,3; -1; 1;1,5; 2;4. а) Запишите: наибольшее число; наименьшее число; число, имеющее наибольший модуль; число, имеющее наименьший модуль. б) Найдите, среди обозначенных, противоположные пары чисел. в) Запишите все целые числа, расположенные на координатной прямой между числами -1,9 и 3,4. г) Найдите сумму всех целых чисел, расположенных на координатной прямой между числами -3,5 и очень надо (и побыстрее)
2sin^2x-3sinx+2=0
Пусть t=sinx, где t€[-1;1], тогда
2t^2-3t+2=0
D=9-8=1
t1=3-1/4=1/2
t2=3+1/4=1
вернёмся к замене
sinx=1/2
x1=Π/6+2Πn, n€Z
x2=5Π/6+2Πn, n€Z
sinx=1
x=Π/2+2Πk, k€Z
ответ: Π/6+2Πn, 5Π/6+2Πn, n€Z; Π/2+2Πk, k€Z
2) Решим однородное уравнение второй степени:
3sin^2x+sinxcosx-2cos^2x=0 | : на cos^2x
3tg^2x+tgx-2=0
Пусть t=tgx, где x не равен Π/2+Πk, k€Z, тогда
3t^2+t-2=0
D=1+24=25
t1=-1-5/6=-1
t2=-1+5/6=4/6=2/3
Вернёмся к замене:
tgx=-1
x=-Π/4+Πn, n€Z
tgx=2/3
x=arctg2/3+Πm, m€Z
ответ: -Π/4+Πn, n€Z; arctg2/3+Πm, m€Z